
A model-based filter to improve local differential privacy

Juan M. Gutierrez 1 Valérie Gauthier-Umaña 2 Juan F. Pérez 3

Abstract

Local differential privacy has been gaining popu-
larity in both academic and industrial settings as
an effective mechanism to enable the computation
of summary statistics by service providers while
providing privacy guarantees to end users. In the
proposed mechanisms of local differential privacy,
the introduction of noise in the user data is key to
preserve privacy, but can greatly limit the estima-
tion power on the provider side. In this paper we
propose to include pre-filters based on machine
learning models to help discard observations that
may be too noisy to add value to the estimation
process. We test our approach on both synthetic
and real datasets, and identify average reductions
of up to 31% in the mean squared error.

1. Introduction
User data collection is a very powerful tool for service
providers to improve the relevance and timeliness of their
services. While service providers typically aim to perform
summary statistical and machine learning analyses, these
may require collecting individual information. However, as
these data may be sensitive, people may not be willing to
share it. To resolve this conundrum, the field of differential
privacy (Dwork & Roth, 2014) has focused on developing
mechanisms that enable a potential provider to extract valu-
able summary information from the data without being able
to recover individual user information. We are particularly
interested in Local Differential Privacy (LDP), where the
raw data is never submitted to the provider, which only re-
ceives a noisy version of it. The addition of noise allows the
user to deny any response and protect his privacy.

1Quantil, Colombia 2Systems and Computing Engineering De-
partment, Universidad de los Andes, Colombia 3 Centro para la Op-
timización y Probabilidad Aplicada (COPA), Department of Indus-
trial Engineering, Universidad de los Andes, Colombia. Correspon-
dence to: Juan M. Gutiérrez <miguel.gutierrez@quantil.com.co>,
Valérie Gauthier-Umaña <ve.gauthier@uniandes.edu.co>, Juan F.
Pérez <jf.perez33@uniandes.edu.co>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Related work. A number of LDP protocols have been
proposed, as described and benchmarked in (Wang et al.,
2017) and (Cormode et al., 2021), including some used
by companies such as Apple (Apple, 2017) and Google,
which proposed and implemented RAPPOR (Erlingsson
et al., 2014). Different protocols vary in their encoding,
using local hashing (Wang et al., 2017) or Hadamard trans-
formations (Apple, 2017), the domain size reduction using
sketches or Bloom filters (Erlingsson et al., 2014), and in
methods to identify heavy hitters or post-process the data to
improve the estimation via rounding and projections (Wang
et al., 2017; Cormode et al., 2021).

Filtering for improved estimation. While the post-
processing techniques mentioned above have focused on
adjusting the counts after the estimation, in this paper we
propose to add a filtering step to improve the estimation
by removing excessively noisy observations at the server.
While this technique can be combined with any of the exist-
ing methods, we choose RAPPOR (Erlingsson et al., 2014)
as a baseline, as it has been recently shown to provide com-
petitive results (Cormode et al., 2021) and displays a number
of variations relevant for analysis. Tests conducted on both
synthetic and real datasets show that the pre-filter approach
is effective to improve the estimation, reducing the mean
squared error by up to 31%.

The next section introduces background material, and Sec-
tion 3 describes the proposed model-based filter approach,
for which we present experimental results in Section 4. We
conclude with a discussion of the results and future work.

2. Background
In this section we provide necessary definitions regarding
local differential privacy, the RAPPOR method (Erlingsson
et al., 2014), on which we build upon, and some recent
proposals on Bloom filter detection.

Local Differential Privacy. We consider the same setup
as in RAPPOR (Erlingsson et al., 2014), where a set of
users submit a value of interest (e.g., the URL of a website
visited by the user) to a central server that accumulates
this information to generate summary statistics. Before
submission, the user value v is passed through an algorithm
A that guarantees its (local differential) privacy, defined as

A model-based filter to improve local differential privacy

follows (Wang et al., 2017).

Definition 2.1. (Local Differential Privacy) Given a privacy
budget ϵ ≥ 0, an algorithm A satisfies ϵ-local differential
privacy if and only if for any input values v1 and v2,

Pr(A(v1) = y) ≤ eϵPr(A(v2) = y), ∀y ∈ Range(A),

i.e., for all possible outputs of algorithm A.

Following this definition, a few algorithms have been pro-
posed and implemented. Here we focus on RAPPOR (Er-
lingsson et al., 2014), which has received much attention
and has been implemented by Google.

RAPPOR. Given a user value v, the Rappor algorithm
executed at the client works as follows: (i) a Bloom filter
is applied to the value v to obtain a bit array of size k. To
this end h hash functions H = {H1, ...,Hh} are used, each
of which outputs an integer in [k] = {0, 1, ..., k − 1}. The
result is a size-k bit array B0 with h positions equal to 1
and the rest set to 0. (ii) a perturbation is applied to each bit
i ∈ B0 to obtain a randomized version B1 as

Pr(B1[i] = 1) =

{
1− 1

2f, B0[i] = 1,
1
2f, B0[i] = 0.

The resulting vector B1 is a noisy representation of the user
value v that is then submitted to the server. This mechanism
has been proven to be 2h ln

(
1− 1

2 f
1
2 f

)
locally differentially

private (Erlingsson et al., 2014).

Once the results from all users are received at the server,
they are processed to obtain frequency estimates for the
values observed. Here the server goes through three main
steps: (i) noise removal, via a Bayesian estimation of the
actual counts observed; (ii) detection of the values observed,
which is performed via a Lasso regression to estimate the
actual non-zero counts; (iii) estimation of the counts, via
linear regression. These steps, explained in detail in (Er-
lingsson et al., 2014), can also be followed by additional
post-processing as discussed in (Cormode et al., 2021) to
improve the frequency estimation.

Bloom filter detection. Recently, there has been a proposal
to improve indexes, such as Bloom filters, through the use of
deep-learning models (Kraska et al., 2018; Mitzenmacher,
2018). The objective is to employ learning models to de-
termine the structure of lookup keys and use this signal to
effectively predict the position or existence of records. The
deep learning model is trained with keys that are known
to either exist or not in the index, such that it can learn to
predict whether a new key is part of the index or not (Kraska
et al., 2018; Mitzenmacher, 2018). We employ this idea
in building our pre-filter model, but in this case, the inputs
used in the model are the outputs of the RAPPOR method
executed at the client’s local machine, which includes both

the Bloom filter and the randomized response steps. The
next section explains this in more detail.

3. A Filter for Local Differential Privacy
We propose to incorporate a pre-filter model in RAPPOR
to improve the frequency estimation in a local differential
privacy setting. The pre-filter is executed at the server when-
ever a new observation B1 is received from a client. Based
on a pre-trained deep-learning model, the pre-filter deter-
mines whether the observation corresponds to any of the
values to be considered in the estimation step or not. Since
B1 is a randomized version of B0, the noise introduced in
the randomization step can be so much that the observation
becomes of little value for the estimation step, and can in-
stead introduce undesired noise. The pre-filter thus helps
the estimation step by preventing excessively noisy observa-
tions from being included as part of the estimation set. We
now describe the model and its training.

3.1. The Learning Model for the Pre-Filter

The objective of the pre-filter is to detect excessively noisy
observations received from a client. Thus, it must be able
to determine whether a given observation, which is a size-k
binary vector, is sufficiently similar to the vectors produced
by the Bloom filter when it receives as input a value that
is expected to be in the database. Here we assume that
the set of possible values has been determined previously,
with approaches such as those described in (Wang et al.,
2017; Cormode et al., 2021). Since the pre-filter receives
data from the client, the value v generated by the user has
already gone through the Bloom filter and the randomization
described in Section 2. We refer to this version of the value
v as encoded v.

The pre-filter thus faces a binary classification task. That is,
we want to learn a model f that can predict if an encoded
value v is similar to any of the encoded versions of the
expected values, or if instead it can be considered as a
noisy observation. To this end we build two sets: the first
set is K, which is made of all the size-k vectors that the
Bloom filter generates for each of the values expected to be
observed. Note that these vectors are encoded in that they
have passed through the Bloom filter, but no randomization
noise has been added. The second set is U , which we build
by generating random size-k vectors, where each bit is set
to one with probability γ. These vectors are the reference
of what can be considered a random vector that adds little
information for the estimation step.

With these sets we can then train a neural network model
as in (Mitzenmacher, 2018), using as training dataset D =
{(Bi, yi = 1)|Bi ∈ K}∪{(Bi, yi = 0)|Bi ∈ U}, such that
category 1 is associated with encoded vectors sufficiently

A model-based filter to improve local differential privacy

similar with those expected to be observed, while category 0
refers to random or noisy vectors. Since this is a binary clas-
sification problem, the neural network can have sigmoid or
hyperbolic tangent activation functions to produce a proba-
bility. The model is trained to minimize the log loss function
L =

∑
(B,y)∈D y log f(B) + (1− y) log(1− f(B)).

The output of f(B) can be interpreted as the probability that
B is an encoded vector similar to those expected, and can
thus be passed onto the estimation step. We include in the
estimation step all vectors B such that f(B) > τ , where τ
is a threshold parameter in [0.5, 1].

3.2. The Model Architecture

The model consists of a six-layer network, where the first
three layers are 1D convolutional layers using ReLU acti-
vation functions with 128 (kernel size 7), 64 (kernel size
3), and 16 (kernel size 2) neurons, respectively. The last
of these convolutional layers is processed by max polling
(kernel size 2). The last three layers are dense with 64, 32,
and 1 neurons, respectively, where the first two layers use
a ReLU activation function, and the last layer uses a hyper-
bolic tangent activation function. Also, we use a dropout of
0.5 between layers.

3.3. A Second Pre-Filter

The results in Section 4 illustrate the gains in accuracy
obtained with the model-based pre-filter described above.
The model is able to identify patterns in the randomized
data that can thus be used to discard exceedingly noisy data
points. In the same vein, we could consider capturing other
patterns additional to those already incorporated by the pre-
filter built on the set D. To explore this possibility we build
a second pre-filter, where the aim is to capture a second-
order pattern, i.e., a pattern that involves two or more bits in
the encoded vector.

For the second pre-filter we compute a new set D̂ =
{(B̂i, yi = 1)|B̂i ∈ K̂} ∪ {(B̂i, yi = 0)|B̂i ∈ Û},
where the vectors B̂i are k/2 bits long and are built as
follows. Each element B̂i ∈ K̂ corresponds to one ele-
ment Bi ∈ K, with entries B̂i[j] = Bi[j] ∨ Bi[j + k/2]
for i ∈ {1, . . . , k/2}. That is, we perform a logical OR
operation among two entries of the vector Bi, without rep-
etition. To obtain the elements in D̂ we perform a similar
OR operation on the random vectors in D to generate binary
vectors of size k/2.

This procedure aims to obtain a reduced version of the
original vectors in K, combining two bits at a time, and
aiming to keep a pattern of zeroes that can be recognized
by the detection model when contrasted with the random
vectors in Û . We then train a similar network model on
these data to obtain the second pre-filter. In production,

when a vector is discarded by the first pre-filter for being
too noisy, we apply the second pre-filter, looking to prevent
the early dismissal of a vector that may have appeared noisy
to the first pre-filter but that kept relevant information for the
estimation step. The second pre-filter thus acts as a second
chance for a vector to be considered in the estimation step.

3.4. Ensuring differential privacy with pre-filters

Applying a post-processing step such as the introduction
of the pre-filters proposed above may raise the question of
its impact on the privacy. As the pre-filter can be seen as a
deterministic mapping that assigns a weight of zero to those
observations considered too noisy, we prove the following
result that shows that applying such a mapping does not
impact the privacy. We prove the result for the case of local
differential privacy, following a similar result in (Dwork &
Roth, 2014) for the non-local (centralized) case.

Proposition 3.1. Let A be an algorithm that satisfies ϵ-local
differential privacy with range R and let f : R → R′ be a
deterministic mapping with range R′. Then the composition
f ◦A is ϵ-local differentially private.

Proof. For any element y′ ∈ R′ there is a set of preimages
T = {y ∈ R|f(y) = y′}. Consider v1 and v2 two different
inputs of A, we have

Pr(f ◦A(v1) = y′) = Pr(A(v1) ∈ T)

=
∑
y∈T

Pr(A(v1) = y)

≤
∑
y∈T

eϵPr(A(v2) = y)

= eϵPr(f ◦A(v2) = y′),

which proves that f ◦A is ϵ-local differentially private.

4. Results
To assess the effectiveness of our approach, we evaluate
first it on synthetic data generated from a Zipf distribution
with a domain of size d = 100 and a system composed of
n = 100000 users or observations. Each observation goes
through the Bloom filter and randomized response steps of
Rappor before being processed by the pre-filter.

In Figure 1 we consider an initial setup with a privacy budget
of ϵ = 3, a Bloom filter with h = 2, k = 128, and a
threshold in the learning model of τ = 0.8. With this privacy
budget, the associated value of f is 0.64. We consider four
different setups: the original setup from Rappor (Erlingsson
et al., 2014), the setup adding one filter, and adding a second
filter. For the second filter we consider the description in
Section 3.3 and a second version where we invert the indexes
when applying the OR operator. For each setup we execute

A model-based filter to improve local differential privacy

100 repetitions with different datasets and compare the mean
squared error (MSE) of the frequency estimation.

������� �������� ��������
���������������������

���

���

	
��

×���

������� ��	����� ��	�����
����������������������

�

�

�

��

×���

(a) Zipf distribution (b) Diabetes data

Figure 1. MSE comparison of the baseline Rappor with 1 and 2
pre-filters. f = 0.7, h = 2, k = 128, τ = 0.8

Figure 1(a) shows that adding the pre-filter model results in a
better estimation, reflected in a smaller MSE mean and stan-
dard deviation. The introduction of a single filter reduces
the mean MSE by about 24%, whereas including a second
filter produces an additional, albeit smaller, reduction of 3%,
for a total reduction in mean MSE of 27%.

��� ��� ��� ��� ���
f

���

���

���

��

×���

������� ��	����� ��	�����

��� ��� ��� ��� ���
f

���

���

���

���

���

�
	

×���

�������� ��
����� ��
�����

(a) Zipf Distribution (b) Diabetes data

Figure 2. Impact of noise probability f . h = 2, k = 128, τ = 0.8

We now evaluate the impact of the probability f , which is
fixed by the privacy budget (a tighter budget requires a larger
f) and determines how much noise is added to the output of
the Bloom filter. We thus fix the other parameters as before,
i.e., h = 2, k = 128, τ = 0.8, and vary the probability
f ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The results in Figure 2(a) show
that as more noise is added through the probability f the
gap between the baseline RAPPOR and pre-filter model
increases. This means the model-based pre-filter is able to
drop those observations which are excessively noisy and
improves the count estimation. Note that the value of f is
larger when the privacy budget is tighter, which is precisely
the case when the pre-filter is more beneficial.

Now we consider the Diabetes Health Indicators Dataset
from the Behavioral Risk Factor Surveillance System, avail-
able in (CDC & Teboul). This dataset contains information
from 253680 Americans surveyed about risk factors related
to diabetes. We estimate the count frequency on the Body
Mass Index variable, which has domain [1, 2, ..., 100].

Figure 1(b) shows that in this case the introduction of a
single filter reduces the mean MSE by about 29%, and the
second filter further reduces it by 31%. As before, we eval-
uate the impact of the probability f in Figure 2(b), which
shows the added benefits of the pre-filter as the f increases
for this real dataset.

5. Discussion, limitations and future work
The results in the previous section illustrate the benefits of in-
corporating a model-based pre-filter in an LDP mechanism.
The benefits are extracted mostly with a single pre-filter,
although the addition of a second pre-filter provides fur-
ther improvements, leading to a reduction of up to 31% in
MSE. Also, the benefits are larger when the noise f is larger,
which is related to scenarios with tighter privacy budgets.

While we have showcased that the pre-filter approach pro-
vides benefits for the estimation step, many open avenues
of investigation remain to be explored in future work. In
particular, it is necessary to study the impact of the model pa-
rameters, the Bloom filter parameters h, k and the threshold
τ . Further, the proposed method works well for moderate
values of the domain size, but there are use cases where this
size can be very large, in the order of hundreds of thousands.
Alternative methods are necessary in these cases.

References
Apple. Learning with privacy at scale. Technical report,

Apple, 2017.

CDC and Teboul, A. Diabetes health in-
dicators dataset. URL www.kaggle.
com/datasets/alexteboul/
diabetes-health-indicators-dataset.

Cormode, G., Maddock, S., and Maple, C. Frequency esti-
mation under local differential privacy. In VLDB, 2021.

Dwork, C. and Roth, A. The algorithmic foundationsof dif-
ferential privacy. Foundations and Trends in Theoretical
Computer Science, 9:211–407, 2014.

Erlingsson, U., Pihur, V., and Korolova, A. Rappor: Ran-
domized aggregatable privacy-presernving ordinal re-
sponse. In CSS, 2014.

Kraska, T., Beutel, A., Chi, E., Dean, J., and Polyzotis, N.
The case for learned index structures. In SIGMOD, 2018.

Mitzenmacher, M. A model for learned bloom filters,and
optimizing by sandwiching. In NeurIPS, 2018.

Wang, T., Blocki, J., Li, N., and Jha, S. Locally differen-
tially private protocolsfor frequency estimation. In 26th
USENIX Security Symposium, 2017.

www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

