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Abstract—Offering consistent low latency remains a key challenge for
distributed applications, especially when deployed on the cloud where
virtual machines (VMs) suffer from capacity variability caused by co-
located tenants. Replicating redundant requests was shown to be an
effective mechanism to defend application performance from high ca-
pacity variability. While the prior art centers on single-tier systems, it
still remains an open question how to design replication strategies for
distributed multi-tier systems. In this paper, we design a first of its
kind PArtial REplication system, sPARE, that replicates and dispatches
read-only workloads for distributed multi-tier web applications. The two
key components of sPARE are (i) the variability-aware replicator that
coordinates the replication levels on all tiers via an iterative searching
algorithm, and (ii) the replication-aware arbiter that uses a novel token-
based arbitration algorithm (TAD) to dispatch requests in each tier. We
evaluate sPARE on web serving and searching applications, i.e., Medi-
aWiki and Solr, the former deployed on our private cloud and the latter
on Amazon EC2. Our results based on various interference patterns
and traffic loads show that sPARE is able to improve the tail latency of
MediaWiki and Solr by a factor of almost 2.7x and 2.9x, respectively.

Index Terms—Cloud, replication, tail latency, models,load balancing

1 INTRODUCTION

Performance variability is considered one of the major pitfalls
in the cloud computing paradigm [1, 2], because the virtualiza-
tion technology does not guarantee performance isolation [3].
Applications hosted in the cloud are thus subject to interference
from unknown neighboring workloads. The more distributed an
application is, the higher the probability that certain components
experience interference and capacity drops. Examples include
modern web applications with standard multi-tier architectures [4],
where each server1 can exhibit time-varying capacity. An effective,
yet expensive, solution to combat performance variability in the
cloud and to fulfill service level agreements (SLAs), defined by
the tail latency, is to scale out the provisioned resources in the
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1. Servers here refer to software components.

unit of virtual machines (VMs) [5, 6]. Nonetheless, the amount
of resources required to fulfill SLAs in a cloud environment with
highly varying VM capacities can grow rapidly [7, 8], and thus
hinder its applicability to highly distributed web applications.

Replicating redundant requests is an inexpensive and yet
effective alternative to improve the tail latency of web appli-
cations [9, 10] and to mitigate the effect of stragglers in big
data applications [11, 12], particularly addressing the issues of
performance variability among computing units. Another argu-
ment to support the replication strategy is that the existing cloud
datacenters [13, 14] are under utilized, say around 20%, for most
of time, meaning there are resources available to serve redundant
requests. Redundant requests are issued either right upon their
arrival [11, 9] or after detecting slow servers [15], and only the
result of the first request replica that completes processing is
returned to the user.

The effectiveness of replication depends on the trade-off
between the overhead of processing additional loads and the
potential performance gain of processing request replicas at fast
servers [16, 17]. Furthermore, the variability of the processing
times has been shown to be central to the effectiveness of replica-
tion on the latency tail [17, 10]. The main challenges of developing
replication strategies are thus to find optimal request redundancy
levels based on the observed variability, and to determine how
to best process and schedule redundant requests. To the best of
our knowledge, all existing studies have centered on a particular
application tier, such as Domain name server and file transfer [17],
or map-reduce-like applications, e.g., SPARK [15]. However, how
to design general replication strategies for distributed multi-tier
web applications hosted in the cloud largely remains an open
challenge, given the workload interdependency across tiers and
the need to avoid communication overheads among tiers [18].

In this paper, we develop a PArtial REplication system, termed
sPARE, to exploit workload redundancy for distributed multi-tier
web applications undergoing strong capacity variability, as for
instance in the cloud. We particularly focus on read-dominated or
read-only workloads, as they represent a significant class of work-
loads in today’s web traffic, e.g., only 0.03% of requests to the
Wikipedia website result in a page update or creation [19]. Partial
replication in sPARE means that disparate replication factors are
defined for each tier, launching redundant requests to mitigate and
exploit the high variability experienced at specific tiers.The aim
of sPARE is to use redundant requests to increase their chances of
being processed at fast servers.To this end, the two key features
of sPARE are: i) a centralized replicator that coordinates the
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Fig. 1: Flows of replicated pages and queries for MediaWiki by an
example of one page containing one DB query. Each system has
front-end Apache and back-end MySQL DB servers.

replication levels at all tiers based on the estimated capacity and
observed latency variability, and ii) distributed arbiters at each tier
that dispatch requests to servers for which we propose a novel
token-based arbitration policy (TAD).

We test sPARE on multi-tier web serving and web searching
applications, namely MediaWiki [20] and Solr [21], deployed at
our private cloud and in the wild on Amazon EC2. Our extensive
evaluation results for different combinations of interference pat-
terns and loads show that sPARE is able to improve the latency,
particularly the tail, by almost a factor of three when compared to
the original non-replicated system. The performance advantage of
sPARE in reducing the latency is particularly significant when the
load and the interference from neighboring workloads are higher.

The specific contributions arising from the design of sPARE
are three-fold. First, we develop a first of its kind replication
strategy, sPARE, for multi-tier systems, which is able to adaptively
replicate requests at different tiers according to the observed
capacity variability, turning this variability into a performance
advantage, particularly for the latency tail. Secondly, the proposed
arbitration policy, TAD, agilely adapts to server capacity variations
and uses the aggregate tier capacity, instead of being restricted by
the variable per server capacity. Last but not least, the proposed
searching algorithm is aware of the time-variability in each tier
capacity and is able to reach near-optimal replication levels within
a few iterations for a wide range of loads and interference patterns.

2 THE CASE FOR PARTIAL REPLICATION

In this section, we illustrate how replication might (not) work out
of the box for distributed web applications hosted in the cloud,
where virtual machines undergo different degrees of capacity
variability due to neighboring effects. We base our description
on the MediaWiki application [20], the open source platform for
Wikipedia, as an example, though it applies in general for multi-
tier applications. Fig. 1 provides a high level overview of Medi-
aWiki and its main components: multiple front-end Apache servers
and multiple back-end database (DB) servers. In the remainder
we interchangeably use front-end (back-end) and Apache (DB)
servers. Additionally, both front-end and back-end have dispatch-
ers in front of the corresponding servers. The performance metrics
of interest are the mean and tail latency, e.g., 99th percentile, to
retrieve a complete page of Wikipedia. The full specification of
MediaWiki and its setup can be found in Section 6.

To serve a Wiki page request, multiple queries need to be
retrieved from the DB. Upon arrival of a Wiki page request,
the front-end dispatcher sends the request to one of the Apache
servers according to the round-robin policy – a load oblivious

strategy. The default back-end load dispatcher of MediaWiki then
dispatches each query to one of the DB servers. To see the impact
of replication, we implement standard speculative replication by
modifying the front-end dispatcher and replicating each page upon
arrival by a factor r, without considering other tiers separately.
Thus, there are r identical replicas for each page request and only
the result obtained from the first completed replica is returned.
Fig. 1(a) illustrates the flow of replicated page requests with an
example where a page containing a single DB query is replicated.
The front-end dispatcher sends two page request replicas to two
different Apache servers, which then independently execute one
DB query at one of the DB servers. As a result, the workload of
both Apache and DB servers increases by a factor of two.

To illustrate the effect of replication under different neigh-
boring effects, our motivating example considers two types of
interference at (i) Apache servers only, and (ii) DB servers
only. The inference thus happens either at the front-end or at
the back-end. To emulate the neighboring effects, we collocate
iperf [22] to create random network transfers between pairs
of VMs. Due to the non-negligible CPU overhead in processing
traffic in a virtualized environment [23], iperf causes both CPU
and network contention. Corresponding to the two interference
patterns, we activate iperf at either tier individually, causing the
effective capacity of the Apache and DB servers to vary greatly.
We explain the patterns of activating iperf in detail in Section 6.
Fig. 2(a) depicts the query processing time at two different DB
servers during an observation window of 5 seconds, where time-
varying processing times of each server are clearly visible, as is
the spatial variability across servers at any given point in time.
Consequently, during most of the observation period one of these
DB servers offers lower processing times, a feature that can be
exploited by a scheduler that is aware of the servers speed.

To demonstrate the effectiveness of the replication strategy
on latency reduction, we execute the MediaWiki application with
replication factor r1={1, 2, 3} at the front-end, i.e., replicating
only the page requests, where r1=1 corresponds to the baseline
case without replication, and a request arrival rate of 20 requests
per second. With an observed average of 60 DB queries per
request, this entails an arrival rate at the back-end of around
1200 DB requests per second. Fig. 2(b) and (c) summarize the
performance gains on the mean and the 99th percentile of the page
latency normalized by the case with r = 1, under different front-
end replication factors, with respect to two interference patterns.
An improvement factor larger than one indicates that replicating
the pages by r times improves the performance, while a value less
than one implies that the overhead caused by processing additional
replicas defeats the potential performance gain.

One can clearly see that simply replicating Wiki pages can
improve the mean and 99th latencies under both interference
patterns. Replication factor r=3 is able to achieve the most sig-
nificant improvement for both metrics under both patterns, except
for the 99th percentile under the second pattern. However, while
replication can achieve a factor of 1.5-2.0x improvement when
iperf interferes with the Apache servers, there is barely a factor
of 1.1x under the second interference pattern. Clearly, replicating
page requests has a more significant effect if the variability is
mostly experienced at the front-end, while it has little impact if
the variability is present at the back-end.

The take-home message is that simple request redundancy is
effective if the capacity variability is observed at the front-end,
but it offers little gains when this variability is present at other
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Fig. 2: (a) Query processing time for 2 different DB servers and (b)-(c) normalized latency of MediaWiki application under two
interference patterns and replication factors.

tiers. Consequently, we advocate request partial replication, where
requests are replicated at those tiers experiencing high capacity
variability, instead of uniformly replicating requests at each tier.

2.1 Challenges of Partial Replication

The design and implementation of replication strategies for dis-
tributed multi-tier systems faces several technical challenges. We
explain these challenges using MediaWiki as a running example,
where we need to determine replication factors (r1, r2) for front-
end and back-end servers (see Fig. 1).

Multiplicative effect on replication loads, resulting in a tree-
like structure. The amount of requests received at the back-end
is essentially amplified by the multiplication of the replication
factors at the front-end and at the back-end. Fig. 1(b) depicts an
example where one DB query is embedded in the requested page.
Whereas with no replication the query is retrieved only once at
the back-end, with (r1, r2) = (2, 2) the query is retrieved 2∗2=4
times. Introducing replication at both tiers significantly magnifies
the workload at the back-end in a tree-like fashion and can risk
the system stability.

Collision of replicated requests at the second tier. One of
the basic principles of a replication policy is to send replicated
requests to multiple servers so as to best take advantage of
the diversity caused by their capacity variability. While it is
straightforward to dispatch the replicated page requests to different
Apache servers, there exists a high probability that DB queries
originated from replicas of the same page request collide at a
DB server. Specifically, DB queries embedded in a page might
end up being retrieved from the same DB server, as highlighted
in Fig. 1(b) by the yellow flash. We refer to this behavior as a
collision as replicas of the same query end up being executed on
the same back-end server, defeating the advantage of exploring the
diversity of resources. Moreover, the collision probability grows
with the number of queries embedded in a page, the number of
tiers, and the replication factors.

Selecting “fast” VMs simultaneously on both tiers. To ensure
the effectiveness of any partial replication strategy, one needs to
ensure that fast servers are selected at both tiers. Let us consider
again the example shown in Fig. 1(b) with replication factors
(2, 2) and three objects embedded in the page. To get the best
result out of replication, we want at least one page replica to be
processed by a fast MediaWiki server, and for such page replica at
least one query replica of each embedded object to be processed
by a fast DB server. Although this is a desirable goal, it is actually
very challenging to achieve since the back-end load-balancer is
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Fig. 3: Example architecture of sPARE with MediaWiki.

unaware of the front-end requests and their replicas. Clearly, load-
oblivious policies, like round-robin, fall short in addressing this
challenge. such as the DB queries at the back-end.

3 SPARE: PARTIAL REPLICATION SYSTEM

We now introduce sPARE, a PArtial REplication system for
distributed multi-tier applications, which determines the replica-
tion factors for all tiers and arbitrates the dispatching of requests
(and their replicas). We particularly focus on read-only requests.
To illustrate the design of sPARE, we continue our MediaWiki ex-
ample, where replicating requests is possible at front-end Apache
servers (tier 1) and at back-end DB servers (tier 2). We note that
while a large body of related work [12, 15] centers on replicating
requests reactively after detecting performance degradation, we
focus on a proactive strategy since the “fast” system dynamics,
e.g., hundreds of msec at tier 1 and few msec at tier 2 for
MediaWiki, limit the benefits of a reactive approach given the de-
lay necessary to identify potential stragglers and submit replicas.
The underlying assumption made here is that the application is
properly dimensioned, meaning that it has sufficient or redundant
capacity to handle the incoming loads. In the following, we first
detail out the design features of sPARE and conclude with the
analysis of the collision probability at tier 2.

3.1 Architecture Overview

To achieve the dual goals of obtaining optimal replication factors
and replication-aware arbitration, sPARE relies on two key com-
ponents: a centralized replicator and distributed arbiters at each
tier. These two components are depicted in Figure 3: one arbiter
for each tier and one sPARE replicator. There are Mi servers at
tier i. To ease the readability, we summarize all key notations used
throughout this paper in Table 1.
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TABLE 1: Summary of key notation and definitions

i subscript for tier i ∈ [1, N ]
M number of servers
V no. of virtual cores per server
s maximum sustainable throughput of a VM without interference
r replication factor
µ average capacity of single core with interference
T average processing time at a core and an inverse of µ
λ arrival rate
Pn non-collision probability
C no. of token per server set in TAD
n no. of toke look-up set in TAD
RT response time target
w the measured variability used in searching alg.

Centralized replicator. The central replicator determines the
replication factor for each tier, (r1, r2), based on the load and
capacity variability at each tier, which are derived from statistics
collected by the arbiters. Particularly, the replicator searches for
(r∗1 , r

∗
2) within a set of boundary conditions that ensure the system

stability and pose a bound on the collision probability, as described
in detail in Section 5.

Distributed arbiters. The arbiters actuate the replication deci-
sions of the replicator by replicating requests and dispatching them
to the servers in their tier. Each arbiter implements three logical
blocks: server selector, request handler, and workload monitor.
The server selector is responsible for choosing fast servers for
the request handler, whereas the request handler is responsible
for cloning the incoming requests and dispatching them to the
servers in the tier. The workload monitor passively collects the
key statistics required by the replicator.

sPARE offers support for two types of arbitration policies,
namely round-robin (RR) and TAD. Whereas RR is load oblivious
and distributes requests immediately to the servers at the tier,
TAD is aware of the load and capacity variability at each tier.
Although RR is known to have a robust performance and low
implementation overhead, we expect a load-aware arbitration,
such as the proposed TAD, to be able to better sustain the extra
workloads introduced by replication. Moreover, TAD increases the
probability that requests are processed by fast servers hosted on
VMs with low interference.

3.1.1 Connection Reuse
Another feature of the sPARE arbiter is its ability to reuse connec-
tions. To reduce the overhead to process the extra load created by
replication, particularly for the MySQL protocol, sPARE reuses
connections to the servers across different requests. Essentially,
connection reuse can avoid the latency overhead not only of
the TCP three-way handshake, but also of any protocol specific
connection setup phases. Whereas the impact is limited for HTTP
requests with no setup phases, this optimization greatly benefits
the MySQL protocol, which includes an initial handshake and
authentication phase.

3.2 Tier 2 Collision Probability

Each arbiter fully manages the local replication within its tier,
hence it is straightforward to select different servers for the
local replicas. However, each arbiter is unaware of the tree-like
relationship between local requests and child requests in later tiers,
such as the relationship between page requests and DB queries
in the MediaWiki example. Consequently, DB queries originated

from the same page request can be sent to the same DB server
in tier 2. We define the tier 2 collision probability Pc, under
replication factors (r1, r2), as the probability that at least one DB
server receives more than one query from the same page request.
Thanks to the connection re-use mechanism, this is equal to the
probability that at least one DB server receives more than one
connection from the same page request.

If r1=1, Pc is zero, since each page request is submitted only
once to tier 1, and the tier 2 arbiter avoids all collisions between
DB queries of the same page replica. For the case r1>1, to obtain
Pc we focus on the non-collision probability Pn=1−Pc to derive
the following.
Proposition 1. The tier 2 non-collision probability under replica-

tion factors (r1, r2) is

Pn =

∏r1−1
j=0

(M2−jr2
r2

)(M2

r2

)r1 . (1)

The proof comes straightforwardly as there are no tier 2
collisions if all r1r2 connections are made to different DB servers.
We note that when the total number of query replicas is at least as
large as the number of tier 2 servers, i.e., r1r2≥M2, the collision
probability is simply one.

Replicas that collide can not benefit from the diversity of
capacity variability, defeating the goal of replication. One can also
see from Eq. (1) that the collision probability increases very fast
with both r1 and r2. Achieving a low collision probability may
require the replication factor r1 or r2 to be very small, limiting
the benefits of exploring the resource diversity at either tier. Thus
a trade-off arises as the overall benefit of one replication factor
with a higher collision probability may outperform the one with a
lower collision probability.

3.3 Tier N Collision Probability
To extend the above result to the N -tier case we define the ampli-
fication factor ai,j , which is the total number of tier-j requests that
correspond to each request in tier i, with 1 ≤ i ≤ j ≤ N . Thus,
under replication factors (r1, r2, . . . , rN ), ai,j =

∏j
k=i rk. Next,

we note that tier j receives ai,j−1 requests for each request in tier
i, each of which it processes independently, replicating them rj
times. We can thus state the following result for P i,j

c , the collision
probability of tier-i requests at tier j, and its complement P i,j

n .
Proposition 2. The non-collision probability P i,j

n = 1 − P i,j
c

under replication factors (r1, r2, . . . , rN ) is

P i,j
n =

ai,j−1−1∏
k=0

(Mj−krj
rj

)
(Mj

rj

)ai,j−1
. (2)

The key difference between (2) and (1) lies in the use of the factor
ai,j−1 to capture the traffic amplification caused by replication
between tiers i and j. As before, if the amplification factor ai,j
is one, the collision probability is simply zero. Finally, as we are
interested in the collision probability at the first tier, the tier-N
non-collision probability is given by (2) with i=1 and j=N .

In the Supplementary Material we generalize the expression
for the non-collision probability. Specifically, we allow a request
to hit a subset of all tiers, and consider the constraint that a request
may be served by only some of the servers in a tier, e.g., because
the data requested is located in some of the servers only.
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4 TAD: TOKEN-BASED ARBITRATION

The objective of the TAD policy is to explore the spatial capacity
variability across servers using replicated requests. The key design
principle of TAD is a lightweight mechanism that is aware of the
replication and the capacity variability without actively probing
the servers’ speeds. To achieve this, the selection of servers and
dispatching of requests is based on the concept of tokens. Each
token represents an admission ticket for a request to be processed
at the corresponding server. TAD assigns tokens to incoming
connections to process all requests therein. Tokens are a cheap
mechanism to dynamically adapt the server load to its capacity,
by implicitly limiting the arrival rate at each server by the token
returning rate. In the following we describe the TAD-based arbiter
implementation in detail.

4.1 Arbiter Implementation

The arbiter is initialized with one or more tokens per server, which
are maintained in a central token pool. Fig. 4 illustrates the internal
design of the TAD-based arbiter including the token pool. The
arbiter listens for incoming connections, which are handled in a
multi-threaded fashion. For every connection, the arbiter spawns
a new pair of server selector and request handler threads and
reroutes all related requests to it. Hence every server selector and
request handler pair is dedicated to a specific connection, whereas
the token pool is shared across all connections.

After the creation of a server selector and request handler pair,
the server selector immediately starts scanning the token pool to
acquire tokens of fast servers and hands them over to the request
handler via a token queue. The request handler waits for requests
to arrive, which it then clones and stores the replicas in a replica
queue. As soon as both queues are not empty, the request handler
retrieves a token-replica pair from the head of each queue, and
dispatches the replica to the server specified by the token. Once
a replica completes, the token is returned to the token queue,
whereas after the connection tokens are returned to the token pool.

4.1.1 Server Selector

Motivated by the effectiveness of the power of many [15, 24]
in reducing latency, we incorporate this idea when scanning
for tokens. At any tier i the server selector acquires ri tokens
by performing ni+ri token look-ups, i.e., ni is the number of
additional look-ups, so as to maximize the probability of finding
the fastest ri available servers. In a cloud setting these fastest
servers may be those not currently being disturbed by neighbors.
Moreover, the server selector skips tokens of the same server to
avoid collisions between local replicas of the same request.

ni + ri Token Look-ups The look-up process is greedy,
meaning that it tries to scan as many as ni+ri tokens to select
at once the ri fastest servers, where the speed of a server is
defined by its last-observed latency. The choice of the additional
number of look-ups ni is empirically decided. Since the overhead
of look-ups is low2, we resort to the extreme case where ni+ri
is equal to Mi, the number of servers in the tier. The benefits
of additional look-ups are easily illustrated through a simple
probabilistic argument. Say that among the M servers, Mf are
currently fast and Ms are slow. By performing mi = ni+ri
lookups, the probability of finding at least one fast server is

mi∑
j=1

(Mf

j

)( Ms

mi−j
)(M

mi

) = 1−
(Mf

0

)(Ms

mi

)(M
mi

) , (3)

which is non-decreasing in mi. This can be shown by considering

the terms on the right-hand side Kmi
=

(Mf
0 )(Ms

mi
)

(M
mi
)

with mi + 1

lookups, which leads to

Kmi+1 =

(Mf

0

)( Ms

mi+1

)( M
mi+1

) =

(Mf

0

)(Ms

mi

)
Ms−mi

mi+1(M
mi

)
M−mi

mi+1

= Kmi

Ms−mi

M−mi
.

This shows that Kmi+1 ≤ Kmi since the factor Ms−mi

M−mi
≤ 1 as

Ms ≤ M . Thus the sequence {Kmi
}mi≥1 is non-increasing in

mi, making {1−Kmi
}mi≥1 and (3) non-decreasing in mi. As a

result, increasing the number lookups mi = ni + ri increases the
chances of finding at least one fast server.

We thus expect the look-up scheme to be beneficial, partic-
ularly when there is a large degree of freedom in selecting fast
servers. However, the benefit of this scheme can be limited in
cases where the number of tokens in use is high, thus leaving only
few tokens in the pool to choose from. This causes a trade-off
between the delay introduced to wait for fast server tokens and
the extra processing time of slow servers. As the latter is difficult
to predict, we restrict the choice to the currently available tokens,
say h, at the token pool. If h<ri, the server selector makes use of
these h tokens and waits for the remaining ri−h to return to the
token pool.

We verify the performance benefit of the extra look-ups via
a small empirical evaluation. To this purpose we use the Medi-
aWiki experiment setup detailed out in Section 6 with TAD and
interference at both tiers. Fig. 5(a)-(b) summarize the performance
gains in terms of latency normalized by the case without redundant
look-ups in sPARE, under different replication factors, and request
rates of λ1=20 and 5 page requests per second (pps). One can see
that the performance gains of having redundant look-ups decrease
with r1, and shows minor differences across different values of
r2. Such a difference can be explained by the particular setup of
the MediaWiki: it has a much larger number of Apache servers at
tier-1 than DB servers at tier-2, i.e., 36>12. Therefore, as TAD
allocates tokens in batches, it has a higher chance to collect all
tokens required by the redundant look-ups in tier 1 than in tier 2.

4.1.2 Request Handler
The request handler continuously replicates incoming requests
and dispatches the replicas to the servers. Once the first replica
completes, the response is sent back. The other replicas will be
discarded but not canceled due to the non-negligible canceling

2. Even with a naive implementation the average overhead was below 20µs
in all our testbed runs.
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Fig. 5: MediaWiki: the normalized improvement factor of look-
ups, under replication factors (r1, r2) and page arrival rates.

overhead, which may easily nullify the effort. We refer readers
interested in the exact impact of canceling overhead to [10, 25].
This is especially true in our example applications with msec
latencies. However, the request handler tries to avoid unnecessary
resource usage by not submitting replicas of an already completed
request, e.g., when the first replica completes before all tokens for
this connection are allocated.

Choice of Ci The performance of TAD depends very much on
the number of tokens per server Ci. A low number of tokens can
under-utilize the resources, e.g., limiting the number of concurrent
executions, and potentially lead to long replica queueing times at
the request handler waiting for tokens. To determine the number of
tokens, we empirically experiment with different Ci, for different
load conditions and replication factors. The rule of thumb practice
here is that we choose a number of tokens that is able to maintain
the system stable and bound the waiting time at the arbiter. A more
in-depth discussion can be found in Section 5.1.2.

4.1.3 Performance Monitor
The workload monitor collects key statistics about replicas, re-
quests and connections and feds them to the replicator. All the
monitoring is done passively to minimize the overhead.More
details on the statistics collected are found in Section 5.

4.2 Analytical Properties

Here we provide an analytical argument on the performance
advantages of TAD in defending against high performance vari-
ability of servers and managing additional replication loads. TAD
can regulate the traffic to each server according to its observed
capacity, which varies with time, and best use the aggregate
capacity of all servers at the same tier. As the following discussion
applies for any tier, we drop the index i from the parameter M .

Let each of the M servers at the tier serve s requests per
second with no interference. One can see s as the maximum
sustainable throughput for a server, but such a value fluctuates
over time depending on the interference of neighboring workloads.
To illustrate how TAD overcomes the impact of interference we
consider the instantaneous capacity and stability condition. To
capture the impact of interference, we assume that in an inter-
ference period the capacity drops from s to γs with 0 < γ ≤ 1,
and that servers experience interference a fraction of time f .

The main advantage of TAD is that it forwards requests to
all servers, but it does so by submitting more requests to the
fast servers. Consider for instance an example with two servers
where one of the servers is suffering from the interference, thus
their capacities are s and γs, and since TAD assigns requests
to both servers according to their capacities, the instantaneous

stability condition is λ < s(1 + γ), which means that the overall
capacity is being used. Instead, if the incoming requests are evenly
assigned to the servers, the instantaneous stability condition needs
to hold for each server. For instance, with the RR policy the
request arrivals are split evenly between the two servers, thus
the arrival rate at each server must be less than its capacity, i.e.,
λ/2 < min{s, γs} = γs, thus λ < 2γs. This limit is clearly
more restrictive than s(1 + γ) obtained with TAD.

Generalizing the above example to M servers, each undergo-
ing a slowdown from its standard rate s to γs for a fraction f of
the time, the capacity under TAD is

Ms((1− f) + fγ) =Ms(1− f(1− γ)).

As long as the arriving request rate is less than this capacity, TAD
can maintain the system stability. Instead, with RR the system is
limited by the slowest server, which receives a fraction 1/M of
the traffic, i.e., λ/M < γs. Thus, we expect TAD to outperform
load oblivious strategies, e.g., RR, especially in systems with high
capacity variability and under moderate loads.

4.3 Empirical Comparison of TAD and RR

Here we empirically compare the proposed TAD against RR, using
the running example of MediaWiki under an interference pattern
where iperf is active at both tiers (see Section 6 for details).
Particularly, we consider the four combinations of applying RR
and TAD arbitration policies at both arbiters, namely, (i) RR+RR,
(ii) RR+TAD, (iii) TAD+RR, and (iv) TAD+TAD, under any given
replication factors (r1, r2), where r1, r2 ∈ [1, 3], i.e., a total of 9
replication factor combinations. In order to ease the comparison of
TAD with RR at different tiers, we use RR+RR as a normalization
baseline for any given load and summarize in Fig. 6 the average
improvement across the 9 combinations of replication factors.
Fig. 6(a)-(b) present the page and query latency for the higher load
case, i.e., arrival rate of λ1=20 pps, and Fig. 6(c)-(d) show the
lower load case, i.e., arrival rate of λ1=5 pps. Overall, we observe
that TAD on both tiers outperforms RR significantly, particularly
regarding the query latency under λ1=20. Here and in many other
setups we have observed that TAD outperforms the simple RR
policy under the mid-range of loads. As the load of λ1=5 pps is
well below the system capacity, the difference induced by a smart
arbitration policy is less significant. Instead, for a load of 20 pps
the introduction of TAD provides an improvement of almost 8x in
query latency, as shown in Fig. 6(b). Here the two main features of
TAD contribute to the its success, i.e, issuing the correct number
of tokens, and performing n+r look-ups.

5 REPLICATOR

The sPARE replicator determines the replication factors
(r1, r2, . . . , rN ) for all N tiers, based on the observed latency
variability, constraints on stability, as well as a predefined limit
on the collision probability. As the value of ri at each tier i is
bounded by the number of servers Mi at the tier, the total number
of replication factor combinations is thus given by the product∏N

i=1Mi, resulting in a large search space.
To perform a fast search for the optimal replication factors,

the replicator first leverages two boundary conditions: i) a set of
system stability conditions; ii) a limit on the collision probability
at tier N . These conditions define a narrower search space, termed
as the feasible set. Afterward, the replicator iteratively searches
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Fig. 6: Page and query latency of MediaWiki: factor of improve-
ment under iperf interference at both tiers, comparing RR+RR,
RR+TAD, TAD+RR, TAD+TAD. The normalization base is the
performance of RR+RR.

through potential replication factors based on the observed latency
variability at each tier. Thus, the operation of the replicator
consists of two steps: i) estimating the average tier capacity to
define the stability conditions and determine the feasible set; ii)
searching for the optimal replication decision within the feasible
set. In particular, estimating the tier capacity requires considering
both the server speed to process requests, as well as the availability
of tokens when applying the TAD policy, as the number of tokens
needs to be appropriately dimensioned to prevent them from
becoming a bottleneck. The following sections detail these steps.

5.1 Estimating Average Tier Capacity
As we consider two types of resources, i.e., servers and tokens
(when using TAD arbitration), we estimate two types of average
tier capacity, namely server processing capacity and token pro-
cessing capacity. The former is defined as the average number of
requests that can be processed by all the servers at a tier per time
unit, whereas the later defines the average number of connections
that can be sustained by all the tokens at a tier per time unit. To
make each tier stable, sPARE ensures that request arrival rates
and connections arrival rates are less than the server and token
processing capacity, respectively. We note that capacity estimation
is long considered a challenging research topic [26], particularly
for the case of concurrent execution.

5.1.1 Server Processing Capacity
To estimate the server processing capacity at tier i, we need to
estimate the average processing speed per server hosted by a VM
in the tier. As we consider multi-core VMs, we actually estimate
µi, the average number of requests processed by each core per
unit of time. Note that µ differs from s defined in Section 4.2, as
µ is the maximum sustainable throughput for each core, whereas
s is the same for each VM. Further, whereas s was the nominal

capacity without any interference, here µ is the actual observed
capacity, which is affected by any undergoing interference. We
employ µi to derive the system stability conditions to determine
the feasible replication levels at each tier. As each VM at tier i has
Vi virtual cores, the total tier capacity, i.e., the average number
of requests that can be processed by a tier, is the product of the
processing speed µi of each core, the number of cores Vi per
server, and the number of servers Mi in tier i, i.e., µiViMi.

To find µi, we focus on its inverse Ti = 1/µi, which is
the expected processing time of a request by a core at tier i.
Due to the processor-sharing core operation, in the estimation of
Ti we need to take into account that a request receives only a
fraction of the processing capacity of a server during its execution,
and this fraction depends on the number of requests executing
concurrently. Thus to obtain Ti, and given that we want to keep the
required monitoring overhead to a minimum, we rely on the simple
Baseline (BL) estimation algorithm introduced in [27], which uses
as input the request arrival and departure times at each server. The
basic idea of the algorithm is to keep track of the number of
concurrent requests and split the corresponding CPU time across
the requests with special care to handle multi-core scheduling.
Observations from a few hundred requests are typically enough to
obtain a reliable estimate [27].

After obtaining µi, we can write the stability constraint on the
server processing capacity as

λiri < MiViµi. (4)

which ensures that the total request arrival rate λiri at tier i is less
than the total tier processing capacity. Recall that the arrival rate
λi already includes the amplification caused by the replication at
any tiers upstream of tier i.

5.1.2 Token Processing Capacity

In addition to the tier server processing capacity constraint in
Eq. (4), the tokens introduced with TAD become a soft resource
and their scarcity can limit the system capacity. We are thus
interested in estimating the token processing rate µK

i , the inverse
of which, TK

i = 1/µK
i , is the average time that a token is held

by a connection. The token processing rate µK
i implicitly depends

on the VM processing capacity in each tier as tokens co-share the
VM capacity. However, whereas the core capacity µi is specific to
a single tier, the token capacity µK

i depends on many tiers since
the time a tier-i token remains busy includes effective execution
time in tier i, tier i+ 1, and all the way down to tier N .

As each of the Mi servers in tier i issues Ci tokens, the token
processing capacity at tier i is the product of the token processing
rate µK

i and the total number of tokens MiCi, i.e., MiCiµ
K
i . As

with the server processing rate, we estimate the token processing
rate via its inverse TK

i = 1/µK
i . Note that the processing time

TK
i per token is different from the effective processing time Ti

of a request. The processing time of a token in any tier i includes
not only the processing of all the requests in a connection in this
tier, but also the time spent waiting for processing at any other
downstream tiers. We can estimate the token processing time TK

i

by keeping track of the token allocation and release times. From
a set of such observations we can obtain the mean TK

i and the
associated mean processing rate µK

i = 1/TK
i .

To ensure the token processing stability, the token demand rate
should be less than the token processing capacity. As one token
is used for each arbiter-server connection, the token demand is
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essentially the product of the connection arrival rate λconni , and
the replication factor at this tier ri, thus

λconni ri < MiCiµ
K
i . (5)

We note that the connection arrival rate is the request arrival rate
divided by the average number of requests within each connection.

Now we can leverage this token stability constraint to deter-
mine the minimum number of tokens that can satisfy the token
demands for any feasible replication factor. Particularly, assume
rmax
i is the maximum replication factor at tier i that is considered

feasible, i.e., it complies with constraints (4) and (5) and can be
identified through off-line profiling. Thus the minimum number of
tokens at tier i is

Ci >
λconni rmax

i

MiµK
i

. (6)

Note that this limit is only a lower bound and we can set Ci to be
the smallest integer that complies with this constraint.

5.2 Finding the Near-optimal Number of Replicas
To determine the optimal number of replicas we rely on three
key observations: i) the introduction of replication is most helpful
when the request processing times, and therefore the latency,
are highly variable; ii) adding replicas is only feasible when the
system has enough (token) capacity to process the additional load
introduced, as established by the stability constrains (4) and (5);
iii) the gains obtained with replication are more significant when
the diversity of the resources is exploited by submitting replicas
of any request to different servers in all tiers. Thus we introduce a
limit on the collision probability, as defined in Eq. (1). Based on
these observations, we define Alg. 1 to find the optimal number
of replicas for a given target metric RT , and a measure of the
variability in each tier wi. In this study we consider the tier 1
latency mean, 95th, and 99th percentiles as target metrics, while
for the variability measure we adopt the ratio of a percentile,
either the 95th or the 99th, to the mean latency. However, the
search algorithm is flexible to consider other target and variability
metrics, e.g., the latency variance.

The algorithm inputs are the estimated request arrival rate,
connection arrival rate, tier capacity, token capacity, target and
variability metrics. The first step in Alg. 1 is to determine the
set F of feasible replication factors r = (r1, r2, . . . , rN ). We
consider r feasible if it complies with the stability constrains (4)
and (5) at each tier, and the resulting collision probability (1) is at
most equal to a pre-defined threshold Pmax

c ≤ 1. These constraints
make the set F relatively small, especially because the collision
probability increases very fast with any ri, and because the load in
tier N increases with

∏N
i=1 ri. Whereas our experiments focus on

the two-tier case, with MediaWiki as our running example, Alg. 1
is stated for the general N -tier case, where the threshold Pmax

c

is applied to the collision probabilities P 1,j
c , for j = 2, . . . , N ,

defined in Proposition 2.
The algorithm searches for the optimal r∗ within the feasible

set, F , by iteratively (a) selecting a new feasible r̃ in the
neighborhood of the current one based on the measured latency
variability wi, and (b) testing the candidate r̃ and measuring the
achieved latency R̃T . The initial r is with all replication factors
set to 1, i.e., r = (1, . . . , 1). For each r we run, we define a set of
feasible directions, I , which holds the indexes of the tiers i whose
replication factor ri can be increased such that the neighbor point
r̂ = r, r̂i=ri + 1 is still in F .

Algorithm 1 Computing the optimal number of replicas. Target
metric is RT and variability metric is wi.

Require: λi, µi, Vi, Mi, Pmax
c and λconni , µK

i (if TAD is used),
for i ∈ [1, N ]

1: Determine set F based on (2), Pmax
c , (4) and (5)

2: r = (1, 1, . . . , 1)
3: I = {i|∃r̂ = r, r̂i = ri + 1, r̂ ∈ F}
4: Measure RT and wi under r
5: while I 6= ∅ do
6: Choose tier j = argmaxi∈I{wi}
7: r̃ = r, r̃j = rj + 1
8: Measure R̃T and w̃i under r̃
9: if R̃T < RT then

10: r = r̃
11: RT = R̃T , wi = w̃i for i ∈ [1, N ]
12: else
13: F = F \ {r̃|r̃j > rj , r̃i = ri, i 6= j}
14: end if
15: I = {i|∃r̂ = r, r̂i = ri + 1, r̂ ∈ F}
16: end while
17: return r

From the set of feasible directions I , the algorithm chooses the
tier with the highest variability measure (line 6 in Alg. 1), and runs
the associated neighbor point r̃. Ties can be broken arbitrarily. If
the target metric RT is reduced under the candidate replication
vector r̃ compared to the values obtained with the current r, we
update r to this neighbor and continue the search process (lines
9-11 in Alg. 1). However, when no improvement is observed, we
remove all points in this direction from set F , including the point
just evaluated (line 13 Alg. 1). In both cases, we update the set of
feasible directions I and continue the search. The search algorithm
stops when the set of feasible directions I becomes empty. Note
that each iteration of the searching algorithm requires a sufficient
amount of time to reach the steady state and obtain meaningful
measurements of the response times. In future work we plan to
explore more sophisticated models that lead to a starting point
which is close to the optimal solution to expedite the search time.

5.2.1 Reaching Near-optimal Replication Factors
Here we illustrate how the iterative algorithm proposed in Alg. 1
searches for near-optimal replication factors on our running Medi-
aWiki example. By fixing the threshold of the collision probability
Pmax
c to 0.5 and using the 95th percentile response time at tier 1

(R95
1 ) as target metric, we show in Fig. 7(a) the search trajectory,

i.e., replication factors at each iteration, and in Fig. 7(b) the
corresponding 95th percentile. The starting point is always the
no-replication case, i.e., (r1, r2)=(1, 1). In the next step, we find
the variability at tier 2 is larger than at tier 1, i.e., w2>w1, thus
we try the factor (1,2), and find it improves the 95th percentile,
R̃95

1 <R
95
1 , thus we move to (1,2). From this point, we recompute

and find that w1>w2, thus the new factor to try is (2, 2). Here
again the new 95th percentile is better, thus we move to (2,2).
From this point, we try first (2,3), then (3,2), but both points lead
to a larger 95th percentile. Thus Alg. 1 terminates and returns
(r∗1 , r

∗
2)=(2, 2) as the best replication factor found.

6 EVALUATION
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Fig. 7: Replication factor and corresponding latency for each
iteration: pattern-2, λ1 = 20 pps.

In this section, we evaluate the use of sPARE on distributed
multi-tier applications, i.e., web serving and web searching, as
a mechanism to defend latency under various performance vari-
ability patterns and load conditions in the cloud. Particularly, we
deploy sPARE on MediaWiki [20] and Solr [21] in our private
cloud testbed and focus on performance metrics of mean and high
percentile latency, i.e., 95th and 99th percentiles. We also execute
sPARE on Solr in a public Cloud (Amazon EC2) where we have
no control of co-located workloads. We show that the latency gains
achieved by sPARE can be truly significant, in comparison to
a simple replication strategy that only replicates requests at the
first tier and uses RR policy to arbitrate the replicated requests.
To decide the optimal replication factor for the simple strategy,
we resort to an exhaustive search through different values of r1
and keep r2 = 1, i.e., not replicating tier 2 requests. Moreover,
we show that the replication factors determined by the sPARE
replicator are nearly optimal for all scenarios considered here, as
empirically proven by comparing against an exhaustive search.

6.1 Testbed

Our private cloud testbed is composed of eight identical physical
servers, seven used to run the experiments and one used as
experiment orchestrator and repository. Each server is equipped
with 32 cores, 128 GB DDR4 RAM, six 1-TB solid state disks in
RAID5, and two 10-Gigabit Ethernet adapters. Each component
of MediaWiki and Solr is deployed on an individual VM equipped
with 2 virtual cores and 4 GB of memory. The same holds for the
three sPARE components, i.e., one replicator and two arbiters, but
the arbiters are hosted on larger VMs, i.e., equipped with 8 cores,
to ensure that they are not the bottleneck.

Neighboring Workload To emulate performance variability
in the cloud, particularly the public cloud, we artificially spawn
neighboring workloads following Poisson arrivals with mean inter-
arrival time of 40 sec and exponential run times with mean of
10 sec. The specific neighboring workload used is iperf [22],
emulating file transfers via the network. Particularly, we consider
three types of interference patterns: (i) interference 1, iperf is
active on tier 2; (ii) interference 2, iperf is active on both tiers;
and (iii) interference 3, iperf is active on tier 1.

6.2 MediaWiki: Web Serving Application

MediaWiki is a latency-sensitive web application composed of
Apache (v2.4.7) plus PHP (v5.5.9) as front-end application server
, and MySQL (v5.5.40) as back-end DB server. Requests are
generated with httperf [28], an open-loop workload generator. The
MediaWiki cluster is composed of 36 front-end Apache VMs and
12 back-end DB VMs. We evaluate sPARE in this MediaWiki

TABLE 2: MediaWiki latency without replication strategy.

λ1 pattern 1 pattern 2 pattern 3
[pps] mean 95th 99th mean 95th 99th mean 95th 99th

20 0.73 1.35 1.80 0.89 2.09 3.08 0.75 1.96 2.84
5 0.70 1.28 1.68 0.92 2.15 3.16 0.79 2.07 3.01
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Fig. 8: Factor of page latency improvement: comparing sPARE
and simple-replication strategy under scenarios of two arrival rates
and three interference patterns.

cluster under two request rates, i.e., λ1=20 and 5 pages per second
(pps), and all three interference patterns described earlier, for a
total of six load scenarios. We configure sPARE with TAD in both
tiers, where the number of tokens per server in tier 1 and tier 2
is 1 and 12, respectively, and the collision probability threshold is
Pmax
c = 0.5. Before showing the latency improvement achieved

by sPARE, we summarize the latency metrics of the original
MediaWiki system in Table 2, as a baseline for comparison. As
pattern 2 imposes a high variability on both tiers, we can see that
the difference between the latency mean and 99th percentile is
larger than for the other two patterns.

6.2.1 Improvement in Latency Metrics

In Fig. 8, we summarize the performance gains of sPARE and
simple-replication over the original MediaWiki in terms of the
normalized tier 1 page latency, for all the six scenarios considered.
Here we set the target metric in Alg. 1 according to the metric of
interest, i.e., the mean, 95th and 99th percentile of tier 1 response
time and the ratio between the percentile of interest, or the 95th if
the target is the mean, and the mean.

Clearly, sPARE is able to achieve considerably better perfor-
mance gains than simple-replication, with an improvement factor
ranging between 1.5 and 3, depending on the metrics of interests
and the interference patterns. There are two key observations.
First of all, the higher the variability is, the higher performance
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TABLE 3: Optimal MediaWiki replication factors reached by
sPARE Replicator: optimal pairs (r∗1 , r

∗
2), number of iterations,

and normalized latency ratios against empirical optimal latencies.

Pattern Target λ1 = 20 pps λ1 = 5 pps
Metric mean 95th 99th mean 95th 99th

1
(r∗1 , r

∗
2) (1,3) (1,3) (1,2) (2,3) (2,3) (2,3)

Iterations 3 3 3 6 6 6
Ratio 1.00 1.00 1.01 1.02 1.03 1.04

2
(r∗1 , r

∗
2) (2,2) (2,2) (2,2) (3,2) (3,2) (2,3)

Iterations 4 4 5 5 5 6
Ratio 1.00 1.00 1.00 1.00 1.04 1.11

3
(r∗1 , r

∗
2) (2,1) (2,1) (2,1) (3,2) (3,2) (2,3)

Iterations 3 3 4 5 5 6
Ratio 1.00 1.00 1.00 1.00 1.00 1.19

gains can be achieved by sPARE. When iperf interference
occurs to both Apache and DB servers, i.e., pattern 2, sPARE can
improve the page tail latency by a factor of 2.1x to 2.7x, whereas
the performance gain of partial replication is less significant for
weaker interference patterns, i.e., 1.5 and 2.7, where iperf only
occurs at either Apache or DB tier. This observation resonates well
with the original motivation of sPARE: defeat the performance
disadvantage caused by the capacity variability and turn it into an
advantage. Secondly, the power of partial replication is particularly
significant for the tail latency, i.e., 95th and 99th percentiles, for
most interference patterns and load conditions.

Let us zoom into the individual interference patterns. On the
one hand, under inference pattern 1, one can see that sPARE can
achieve a factor of 1.7x improvement for the page latency across
all metrics considered. In contrast, simple-replication barely gains,
compared to the no-replication MediaWiki system, because repli-
cating only tier 1 requests does not really address the performance
variability happening at tier 2. On the other hand, under a high
degree of interference, i.e., pattern 2 where iperf is active on
both tiers, sPARE still outperforms simple-replication, with an
even bigger difference than pattern 1. The smaller gain in pattern
1 is attributed to the fact that executing all the DB queries in a page
requires on average 127 msec, which is just 26% of the average
page latency of 482 msec. Thus most of the page execution time
occurs in tier 1, where no interference in present with pattern 1.
Also, under interference pattern 3, simple-replication comes close
to sPARE for the case with λ1 = 20. However, when the baseline
load is lower, i.e., λ1 = 5, sPARE reduces all three latency metrics
under all three interference patterns.

6.2.2 Reaching Optimal Replication Factors

We summarize the replication factors obtained with the sPARE
replicator and the number of iterations required in Table 3. We
also report the normalized latency ratio computed against the
empirical optimal latency, which is obtained by exhaustive search
through possible pairs (r1, r2). The value of one indicates that the
replicator indeed reaches the optimal replication factors.

From the six scenarios and three metrics considered in Table 3,
we see that the sPARE replicator successfully reaches the optimal
replication factor that results in the minimum latency for most of
the 18 combinations, as shown by normalized latency values equal
to one. In some cases, when the base load is low, λ1=5, the repli-
cator tends to reach sub-optimal replication factors, particularly
for the 99th percentile. However, even in these cases the obtained
latency is close to the optimal one.

We also observe that the replicator increases the replication
levels for those tiers experiencing interference, when λ1 = 20,
i.e., increasing DB query redundancy under interference 1, in-
creasing page redundancy under interference 3, and increase
redundancy at both tiers under interference 2. However, when
λ1 = 5, the replicator increases the replication levels on both
tiers for the three interference patterns, as the load is sufficiently
low and provides extra room to accommodate additional replicas.
In terms of the number of iterations required by the replicator,
this is typically larger for λ1 = 5 than for λ1 = 20, due to a
broader range of potential replication levels. Also, the number of
iterations grows with the complexity of the inference patterns, i.e.,
it is higher for pattern 2 than for patterns 1 and 3.

6.3 SOLR: Web Searching

httperf Solr PHP UI Solr Nutch
MySQL

HBase

Fig. 9: Solr Architecture.

Our Web Searching use case is based on Nutch [29] and
Solr [21]. Nutch crawls the web for documents to index, whereas
Solr creates the search index and answers the queries. Fig. 9
shows the complete software setup, which can be split at the
boundary between Solr and Nutch. This is highlighted in yellow
and green colors. The green part is the batch workload part used
to initialize the benchmark. It comprises Nutch (v2.1.2) plus a
storage backend, e.g., HBase and MySQL among others. Here we
settle for MySQL (v5.5.40). We initialize the benchmark by first
using Nutch to crawl 50000 random URLs from the dmoz [30]
repository and then sending the fetched documents to Solr to be
indexed. This workload is not affected by sPARE.

The yellow part in Fig. 9 is the interactive part handling the
user requests on which we apply sPARE. It comprises replicated
instances of Solr-PHP-UI (v15.12.11) and Solr (v4.10.4). Solr-
PHP-UI [31] offers a web-based user interface to access the query
API of Solr. This part is similar to the MediaWiki setup, but
Solr-PHP-UI and Solr communicate via HTTP, hence the tier 2
arbiter is an HTTP arbiter. The other notable difference is that
each request at the web GUI forwards only one request to Solr.

In the following, we evaluate the effectiveness of sPARE to
reduce page and query latency for Solr. Here we use TAD on
both tiers, with 1 and 3 tokens per server at tier 1 and tier 2,
respectively, and collision probability threshold for the replicator
Pmax
c = 0.5. We focus on scenarios with interference patterns

1 and 2, and with request arrival rates λ1 = 40 and λ1 = 10.
In Table 4 we summarize the latency metrics obtained from the
baseline Solr. Similarly to MediaWiki, the latency degrades with
the degree of interference, particularly the 99th percentile.

TABLE 4: Latency of Solr without replication strategy.

λ1 pattern 1 pattern 2
[pps] mean 95th 99th mean 95th 99th

40 28.6 56.6 97.8 35.3 87.6 173.7
10 23.8 45.7 86.5 35.9 90.8 167.0

6.3.1 Improvement in Latency
We summarize the factor of latency improvement in Fig. 10,
comparing to the baseline latency for different scenarios. While
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Fig. 10: Solr: Factor of page and query latency improvement of
sPARE under two arrival rates and two interference patterns.

the improvement for the mean latency is comparable to Mediawiki,
sPARE achieves a remarkable performance gain for the 99th

percentile, with factors ranging between 2x and 7x, for both page
and query requests. The best improvement factor with sPARE is
achieved for the 99th percentile of page latency, under interference
pattern 2, supporting the effectiveness of sPARE in defeating the
long tail latency caused by high capacity variability. We also
observe that sPARE is able to provide the largest gains on those
tiers that suffer the largest variability. Thus, under interference
pattern 1 the gains are more significant for the query latency,
while under pattern 2 the gains are very similar for page and query
latency. In addition, while the gain in mean is close to a factor of
2, the gains for the tail percentiles are much larger, with factors
of up to 6x for both page and query 99th latency percentile. The
highest percentiles, which suffer the largest degradation due to
the capacity variability, are the most benefited by the introduction
of sPARE. Moreover, thanks to the TAD arbiter, the performance
gains of both pages and queries are higher for the higher arrival
rate, meaning that sPARE arbiters are able to efficiently leverage
the spatial capacity variability across servers and sustain the addi-
tional loads introduced by replication. From the experiments with
both MediaWiki and Solr, we observe that sPARE can effectively
improve the performance of distributed multi-tier applications,
particularly under high capacity interference, especially the tail
latency of tier 2 requests.

6.3.2 Reaching Optimal Replication Factors
Table 5 summarizes the optimal replication factors determined
by the replicator, the number of iterations, and the normalized
latency against the empirical optimal one. As indicated by the
normalized values, which are close to one for all load scenarios
and metrics considered, the replicator successfully reaches near-
optimal replication factors, in spite of being a greedy algorithm.
Similar to the findings in MediaWiki, the replication factors are
positively correlated with the location of the interferences, i.e.,
replication levels at tier 2 are higher under pattern 1 and both
replication levels are high under pattern 2. However, there are a
few exceptions, which actually do not achieve the empirical opti-
mal values, as indicated by normalized latency ratios greater than
one. Particularly, under pattern 2 and λ = 40 pps, sPARE does not

TABLE 5: Optimal Solr replication factors reached by sPARE
Replicator: optimal pairs (r∗1 , r

∗
2), number of iterations, and nor-

malized latency ratios against empirical optimal latencies.

Pattern Target λ1 = 40 pps λ1 = 10 pps
Metric mean 95th 99th mean 95th 99th

1
(r∗1 , r

∗
2) (1,3) (1,3) (1,3) (2,2) (1,2) (1,3)

Iterations 3 3 3 5 3 3
Ratio 1.01 1.00 1.00 1.00 1.00 1.00

2
(r∗1 , r

∗
2) (1,3) (1,3) (2,3) (2,2) (2,2) (2,2)

Iterations 3 3 5 4 4 4
Ratio 1.07 1.04 1.15 1.00 1.00 1.00

TABLE 6: Latency of Solr without replication.

λ1 Ireland Oregon
[pps] mean 95th 99th mean 95th 99th

5 26.13 34.48 94.26 24.21 34.24 39.67
1.25 26.68 33.72 60.06 25.98 35.59 40.31

reach the optimal mean, 95th and 99th latency percentiles. For the
targets of mean and 95th percentile latency, sPARE only increases
the replication levels at the tier 2, though the interferences occur
at both tiers. For the 99th percentile, sPARE increases replication
levels for both tiers drastically, resulting into higher replication
factors than for the case with λ = 10 pps, i.e., (2, 3) v.s. (2, 2).
This observation counters the intuition that optimal replication
factors are lower for more loaded systems, because of lower free
capacity for replication loads [10]. This is a result of the greedy
steps in the algorithm which may result in it getting trapped at
a sub-optimal solution. In spit of this, the largest optimality ratio
observed here is 1.15, which implies that the latency obtained with
sPARE is just 15% larger than the empirical optimal.

6.4 SOLR on EC2

Amazon EC2 Testbed We evaluate sPARE on Solr in the wild
on Amazon EC2. The Solr cluster is composed of eight front-
end Solr-PHP-UI VMs and eight back-end Solr VMs, each cor-
responding to Amazon t1.micro instances. The same holds true
for the three sPARE components. These VMs are subject to the
performance variability experienced in a public cloud deployment.
We use TAD on both tiers with 1 token per server, Pmax

c = 0.5 as
collision probability threshold for the replicator and request arrival
rates λ1=5 and 1.25.

Solr Baseline We summarize the latency metrics obtained
from the baseline Solr deployed on Amazon EC2 in Table 6. Since
on Amazon EC2 we have no control on the performance variability
of the VMs, we report results from deployments in two different
datacenters: Ireland and Oregon. The two datacenters achieve
comparable mean latency values, however the performance vari-
ability in Ireland is higher than the one in Oregon as can be seen
from the higher 99th percentile values.

6.4.1 Improvement in Latency
We summarize the factor of latency improvement in Fig. 11,
comparing to the baseline latency for different scenarios. Here
sPARE achieves mostly improvements for the latency in the range
from 1.3x to 1.6x, whereas the best improvement factor is 2.9x
for the 99th percentile of page latency. These values, although
lower than the improvements on our private testbed, are quite
significant as they are obtained in the wild, where we do not have
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Fig. 11: Solr: Factor of page and query latency improvement of
sPARE under scenarios of two arrival rates and two datacenters.

control on the performance variability as in our controlled private
cloud. This means that they reflect the expected gains in real-
world deployments, making the 2.9x gain even more impressive.
The fact that the highest gain is achieved in the datacenter with
the higher observed performance variability, i.e., Ireland as seen
in Table 6, supports on the one hand the effectiveness of sPARE in
defeating the long tail latency caused by high capacity variability.
On the other hand, it underlines that the achievable gains depend
on the inherent performance variability of the cloud infrastructure.
The highest percentiles, which suffer the largest degradation due
to capacity variability, are the most benefited by sPARE.

7 RELATED WORK

Our work is related to prior art in the areas of (i) performance
interference management in the cloud, (ii) speculative replication,
(iii) tail latency optimization, and (iv) models for replication-
enabled systems. As a detailed survey of the extensive related
work is not possible here, we outline some particularly relevant
work and highlight its relation to the solutions proposed in this
work. We structure the related work in these four areas.

Performance interference in Cloud. Cloud computing offers
many advantages, simplifying the deployment and management
of web services and HPC applications, but also suffers from
high performance variability due to its co-located nature. A
plethora of related work addresses this pitfall, from characteri-
zation analysis [32] to solution strategies, which are either in the
direction of scaling out/up provisioned resources in an economic
way [33, 34, 35] or introducing replicated requests [17]. Cloud
providers particularly offer cheaper instances at higher perfor-
mance instability, such as AWS spot instances [36] and the prior
art [35, 37] focuses on striking the optimal trade off between cost
and performance variability. Wang et. al. [33] take the perspective
of the cloud provider and demonstrate that combining pricing
design and effective capacity modulation, i.e., the root cause of
interference, can achieve better profit for the cloud providers and
performance satisfaction for cloud users. Both Farley et. al. [2] and
Björkqvist et. al. [34] proposed to intelligently and opportunisti-
cally choose VMs with better performance, whereas Subramanya

et. al. [7] explore the pricing structure in the cloud to maintain
performance in a cost-effective way. While increasing the resource
redundancy only increases the probability that requests are served
by a fast server in a coarse time granularity, ensuring fast server
selection for individual requests still requires the assistance of a
scheduling algorithm [1] that is aware of the interference.

Speculative replication. Speculatively replicating requests
has been shown to be an effective strategy to strengthen system
dependability [38] and to improve the response time [17], partic-
ularly the high percentiles. Most work on replication centers on
a single tier for a wide range of applications, from conventional
web services [9, 39] to recent big data platforms [11, 40, 15].
Replication policies in web and big data systems can be grossly
classified by the issuing time of the replicated requests and by
the canceling policy on the remaining redundant requests. Dolly
and Grass [11, 12] advocate the efficacy of cloning all MapRe-
duce tasks upon their arrival, a typical practice in speculative
computing [41]. Wang et al. [42] design an efficient algorithm
to reactively spawn speculation requests and further save compu-
tation capacity from serving unnecessary requests especially for
systems that have much longer execution times than MapReduce
applications. Chen et al. [40] extend the full cloning strategy to
scenarios with jobs of different priority. Upon receiving the first
result from replicated requests/jobs, the majority of replication
policies leave the rest of replicas in the system due to the overhead
of terminating requests, while a few studies show the benefits of
terminating requests for certain benchmarks [9]. To best harvest
the performance gains of request redundancy, Hopper [15] further
develops a replication-aware scheduling algorithm for Spark.

Optimizing tail latency. As the tail latency significantly af-
fects users’ quality of experience, different resource management
policies are designed to minimize the tail latency and exhibit
disparate merits at different loads. For example, replication strate-
gies [11, 12, 9] are effective for low loads, admission control [43]
is particularly good for overload management, and scheduling
policies [15, 1, 24, 44] are applicable to wider load ranges.
Elastic resource scaling [45, 46, 47, 48], in terms of VMs or
containers, is able to improve the overall latency in a cost effective
manner when encountering dynamic loads, although it may not
necessarily be effective on the tail latency [25]. The disadvantage
of request replication is the resulting redundant load [17] that
may destabilize the system. SNC Meister [43] controls the tail
latency in datacenters by enforcing priorities and limiting rates
in both storage and network. State of the art schedulers aim to
minimize the tail latency by figuring out which servers are faster,
as found in systems such as big data processing engines [24],
in-memory datastores [44], and cloud systems [1]. Sparrow [24]
advocates to reduce the task size of MapReduce jobs and power
of many choices to minimize the impact of scheduling tasks to
slow servers. C3 [44] leverages the number of queueing requests
as an indicator for the speed of distributed memcached servers
and schedules requests to servers with the shortest queue. An
advantage of scheduling policies is that they can be combined
with replication or admission control policies [15] and therefore
are suitable for any load conditions.

Models for speculative replications. Motivated by the effi-
cacy of replication strategies in real systems, various stochastic
models aim to answer the fundamental question of the optimal
number of replicas under various system assumptions, i.e., arrival
processes, canceling policies, service processes, and performance
metrics, i.e., average v.s. tail response times. A common scenario
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is the automatic canceling of the remaining redundant replicas
upon receiving the results from the fastest tasks [49] under Poisson
arrivals and exponential service times. The average response time
is a frequently used metric [17, 49, 16] to study the impact
of additional replicas, except for Qiu et al. [10] who derive a
tail latency model under the assumption of automatic replica
canceling. Pérez et. al. [25] derive a closed form solution of the
average response time for three different canceling policies, i.e.,
no cancel, cancel with delay overhead, and immediate canceling.
Given the fact that replicas request the same content, the majority
of modeling work still assumes independent service times, except
for [50, 51, 52]. Qiu et. al. [52] model the distribution of response
times for cloud-hosted web services that have Markovian arrival
times via matrix analytic methods. The majority of analytical
models are validated via simulations, except [52, 17] that provide
empirical validation on real systems.

8 CONCLUDING REMARKS

To guarantee latency performance for multi-tier applications in the
cloud, where high capacity variability is experienced, we propose
a partial replication strategy, sPARE, which introduces workload
redundancies according to the load and capacity variability ob-
served in each tier. sPARE features a centralized replicator, which
can attain near-optimal replication factors, and a distributed token-
based arbiter, whose multi-threaded design and lightweight imple-
mentation effectively dispatches replicated requests to fast servers.
Our extensive evaluation results, applying sPARE to multi-tier web
serving and web searching applications, show that the proposed
design and implementation of partial replication can greatly im-
prove the latency, particularly its tail, under diverse neighboring
interference patterns. In summary, sPARE significantly improves
the latency for multi-tier applications in the cloud, turning the
pitfall of capacity variability into a performance advantage.
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