
Differential Approximation and Sprinting for

Multi-Priority Big Data Engines

Robert Birke
ABB Research

Baden-Dättwil, Switzerland
robert.birke@ch.abb.com

Isabelly Rocha
University of Neuchâtel
Neuchâtel, Switzerland
isabelly.rocha@unine.ch

Juan Perez
Universidad del Rosario

Bogotá, Colombia
juanferna.perez@urosario.edu.co

Valerio Schiavoni
University of Neuchâtel
Neuchâtel, Switzerland

valerio.schiavoni@unine.ch

Pascal Felber
University of Neuchâtel
Neuchâtel, Switzerland
pascal.felber@unine.ch

Lydia Y. Chen
TU Delft

Delft, Netherlands
y.chen-10@tudelft.nl

Abstract

Today’s big data clusters based on the MapReduce paradigm
are capable of executing analysis jobs with multiple priori-
ties, providing differential latency guarantees. Traces from
production systems show that the latency advantage of high-
priority jobs comes at the cost of severe latency degrada-
tion of low-priority jobs as well as daunting resource waste
caused by repetitive eviction and re-execution of low-priority
jobs. We advocate a new resource management design that
exploits the idea of differential approximation and sprint-
ing. The unique combination of approximation and sprinting
avoids the eviction of low-priority jobs and its consequent
latency degradation and resource waste. To this end, we de-
signed, implemented and evaluatedDiAS, an extension of the
Spark processing engine to support deflate jobs by dropping
tasks and to sprint jobs. Our experiments on scenarios with
two and three priority classes indicate that DiAS achieves up
to 90% and 60% latency reduction for low- and high-priority
jobs, respectively. DiAS not only eliminates resource waste
but also (surprisingly) lowers energy consumption up to 30%
at only a marginal accuracy loss for low-priority jobs.

1 Introduction

Big data production systems, e.g., Google [41] and Face-
book [13], implement priority scheduling to process job
streams with different characteristics and latency require-
ments. Analysis jobs, e.g., hive queries [17] and text mining,
of different priorities arrive in streams and are executed as
parallel jobs with varying numbers of map and reduce tasks.
Trace studies [12] show that high-priority jobs are promptly
served with little queueing time, while low-priority jobs
suffer from repetitive evictions causing significant resource
waste. This can be attributed to the practice of preemptive
priority scheduling [36], where high-priority jobs are given
the ability to preempt lower-priority jobs in execution. The
average latency slowdown of low-priority jobs [33], i.e., the
end-to-end response time divided by the execution time ex-
cluding eviction, can be 3× higher than for high-priority
jobs. All in all, priority-enabled big data systems preserve

the performance advantage of high-priority jobs at the cost
of resource efficiency and performance of low-priority jobs.
It is extremely challenging to optimize the performance

of big data engines with priority scheduling as performance
conflicts arise across disparate job priorities as well as across
performance targets, i.e., latency vs. resource efficiency. Meet-
ing the latency targets in priority systems is a long standing
challenge from both system [14, 36] and modelling [20, 22]
perspectives due to the complex dynamics and performance
requirements across diverse priority classes. This is partly
because the processing order of low-priority jobs highly de-
pends on the high-priority jobs, especially when low-priority
jobs are evicted during periods of resource shortage. In addi-
tional to the inter-job dependency, big data jobs themselves
have complex execution dynamics across their parallel tasks
and synchronization stages.

Existing systems address the latency issue of big data en-
gines mainly from the perspective of single job type, i.e., one
single priority. On the one hand, approximation-enabled pro-
cessing engines, e.g., BlinkDB [10] and ApproxHadoop [18],
reduce the execution times by processing a fraction of in-
put data. The performance advantage comes at the cost of
accuracy losses. On the other hand, hardware features are
increasingly being exploited to accelerate the executions of
jobs. For example, Pupil [43] and Sprinting Game [16] tem-
porarily sprint the CPU frequency during the slow execution
phases of jobs. However, these engines do not readily apply
to multi-priority scenarios, answering the performance and
resource tradeoff among different priorities.

We advocate to differentially approximate and sprint CPU
frequency for jobs of different priorities, termed differen-
tial approximation and sprinting (DiAS), to replace preemp-
tive eviction in priority scheduling. DiAS improves the la-
tency for all priorities and eliminates resource waste from re-
executing the evicted low-priority jobs. To achieve this,DiAS
reduces a fraction of data load for low-priority jobs and tem-
porarily increase the CPU frequency for high-priority jobs.
The differential approximation adopts a controllable ap-

proximation level that discriminates among priority classes

ar
X

iv
:1

90
9.

05
53

1v
2

 [
cs

.D
C

]
 1

6
Se

p
20

19

by dropping different fractions of data. It gives better laten-
cies for low-priority jobs at the cost of their accuracy loss and
minor latency increase for high-priority jobs, depending on
the levels of input data dropping. The differential sprinting
then adjusts the frequency levels such that the high-priority
jobs can be accelerated after temporarily waiting behind the
low-priority approximate jobs.
We design, implement and evaluate DiAS on top of

Spark [42]. The DiAS extension module is composed of N
priority buffers, and one deflator that assigns approxima-
tion and sprinting levels for each priority. To determine the
dropping and frequency levels, we derive a set of stochastic
models that can predict average response times of DiAS jobs.
The models, based on matrix-analytic methods and parame-
terized via simple linear regressions, can effectively guide
the choice of approximation levels for each priority.
We evaluate DiAS using benchmarks that process the

contents of the stackexchange [9] network of question-and-
answer websites as well as the Google web graph [8], with
two and three job priority levels. To demonstrate the robust-
ness of DiAS, we consider various workload profiles, i.e.,
priority ratios, job sizes, and system loads. Evaluation results
show that DiAS achieves remarkable reductions not only on
the mean and tail latency of low-priority jobs, but also on
the tail latency of high-priority jobs. With DiAS we achieve
up to 90% and 60% reduction in the mean/tail latency for low-
priority and high priority jobs, respectively, a preemptive
priority system without approximation and sprinting. More-
over, the promising performance gain of DiAS comes with
a noticeable energy reduction energy, i.e., up to 30% , even
after spending extra power to sprint the high priority jobs.
Our contributions are multi-fold. First, we put forward a

first of its kind design for differential approximation and
sprinting that preserves the latency advantage of high-
priority jobs and reverts the latency disadvantage of low-
priority jobs for both mean and tail latencies. Second, we
derive bottom-up stochastic models that capture the dynam-
ics of big data jobs (at both the task and the stage levels)
that implement different approximation and sprinting levels.
Third, we implemented DiAS on top of Spark, the state-of-
the-art big data processing engine, by building amodel-based
job deflator and augmenting Spark with the approximation
capability of dropping tasks. Last, DiAS agilely combines
multiple knobs (task dropping, sprinting, and scheduling) to
achieve significant latency and energy reduction from the
state of the art.

2 Motivation and Background

Here, we first use traces collected from production systems
to motivate the performance pitfall of preemptive priority
scheduling, i.e., resource waste from evicting low priority
jobs. We then discuss the background of priority scheduling,

big data processing engines to highlight their complexity,
and computational sprinting.

2.1 Resource Waste in Production Systems

A number of field studies [33, 34, 36, 41] from publicly avail-
able big data cluster traces show that priority scheduling is
widely adopted in production big data systems. Workloads
are defined in the unit of jobs that are in turn composed of
multiple tasks. Jobs are divided into multiple classes, each of
which is assigned with a priority level. For example, Google
clusters employ 12 priority levels [36]. Performance of high-
priority jobs is typically enforced at the cost of low-priority
jobs. Earlier studies [34] show that jobs with the lowest pri-
ority (priority 0) are repetitively evicted by the scheduler,
due to the arrival of high priority workloads. The unfortu-
nate consequences of eviction in production systems are
two-fold: (i) high amount of resources, i.e., 25% machine and
30% CPU time, are spent/wasted on subsequent evictions;
(ii) significant latency degradation for low priority jobs, e.g.,
the slowdown of priority-0 jobs compared to the case of
no eviction is 3 times higher than that of priority-6 jobs.
Differential approximation eliminates this resource waste
as low-priority jobs are never evicted. Instead, low priority
jobs are processed approximately to provide short response
times and to allow high-priority jobs to quickly gain access
to processing slots.

2.2 Priority Scheduling

It is of paramount importance to optimize the priority sched-
uler, especially when encountering big data workloads with
strong inter- and intra-priority dynamicity [13, 36]. Priority
schedulers typically separate jobs by their priority levels and
keep them in separate queues. Then, they determine when
and which job to process next Figure 1 depicts the schematics
of a big data cluster with multiple slots serving high- and
low-priority jobs in two queues. Jobs arrive with a number of
parallel tasks, following MapReduce [15] programming par-
adigm and having time-varying arrival rates. Jobs with the
same priority class stay in the same queue and are typically
served in a first-come-first-served (FCFS) manner. Across pri-
orities, jobs with a higher priority have precedence over any
job with a lower priority. Upon arrival of a high priority job,
the scheduler ensures that it is served quickly by either evict-
ing any lower priority jobs currently being processed, or by
letting the current lower priority jobs to finish and immedi-
ately start the incoming job. The former is called preemptive,
whereas the latter is termed non-preemptive priority sched-
uling. As observed in [34], the Google production systems
employ preemptive priority scheduling, causing significant
resource waste due to evictions. After being evicted, low-
priority jobs return to the head of the queue and wait for new
scheduling opportunities, i.e., until no high-priority job is
queued or processed. These evictions are completely avoided

2

!
map

"
red.

!
map

priority #1 queue

"
red.

!
map

priority #2 queue

big data engine

#
slot

#
slot

!
free

!
free

!
free

!
free

!
free

!
free

!
free

#
slot

#
slot

#
slot

Figure 1. Schematics of priority scheduling for big data jobs.

by differential approximation as it employs non-preemptive
scheduling, with the consequent resource savings.

2.3 Computational Sprinting

Computational sprinting allows for bursts of peak perfor-
mance under a sprinting budget. The sprinting budget can
stem from thermal [35], power [16] or provisioning [3] con-
straints. Several sprinting mechanisms exist, from modifying
the CPU performance via dynamic voltage and frequency
scaling (DVFS) [35] to tuning the job parallelism [19]. The
common aim is to temporarily accelerate the execution of
a job. Each sprinting mechanism is controlled via a corre-
sponding sprinting policy which determines what and when
to sprint. Time-based policies levering timeouts to control
the sprinting are rather common [23, 30].

2.4 Processing Engines and MapReduce Jobs

MapReduce is a parallel programming paradigm to process
data at scale. Spark [2] is a popular open source implemen-
tation of this paradigm with additional support for fast itera-
tive computations and fault tolerance mechanisms. A typical
MapReduce job processes input data and returns analysis
results via parallel tasks executed in multiple map and re-
duce stages. The input data are organized as blocks stored in
a file system, such as the Hadoop File System (HDFS) [37],
which splits data across the servers in the cluster. During
a map stage, map tasks are spawned to process one input
block each. Intermediate results are stored as key-value pairs.
Afterwards, reduce tasks access and aggregate the interme-
diate key-value pairs for the final result. A job can comprise
multiple such map and reduce tasks/stages. Specific policies
supported by cluster job scheduler exist to allow one or mul-
tiple concurrent jobs in the engine, respectively for FCFS
and weighted fair sharing.
DiAS provides a turnkey solution compatible with the

plethora of existing scheduling frameworks and job sched-
ulers (e.g., Hadoop and YARN [39]) that support various
allocation policies and resources across analysis frameworks.
In essence, DiAS achieves this by altering the job sizes to
fulfill the latency and precision constraints simultaneously.
We detail this approach next.

3 map 2 reduce

!
map
!
map
!
map

"
wait

"
wait

#
red.
#
red.

dropped
map task

!
map
!
map

"

#
red.
#
red.

$
1 early drop

latency
gain

!
%

Figure 2. Approximation by task dropping: an example on
a job of 3 maps and 2 reduce tasks.

3 Differential Approximation and

Sprinting

Motivated by the importance and complexity of tuning the
performance of priority-enabled systems, we propose the
idea of differential approximation and sprinting across dif-
ferent priority levels as a means to (i) reshape the workload
demands of jobs in each priority level; (ii) implicitly provi-
sion more resources to higher-priority jobs (iii) speed up
the execution of lower-priority jobs by deflating their pro-
cessing load, i.e., number of tasks; (iv) provide consistent
performance guarantees on high-priority jobs, and (v) min-
imize resource waste. The core goal of differential approx-
imation and sprinting is to decide the approximation level
(task dropping ratio), denoted by 0 ≤ θk ≤ 1, and sprinting
timeout, denoted by Tk to be applied on arriving jobs given
their priority class k , their tolerance to accuracy degradation,
and the available sprinting budget. The expected outcome
of differential approximation in a scenario of two job pri-
orities, i.e., high vs. low, is to minimize the resource waste
and average/tail latencies of high/low priority jobs, while
maintaining the relative error of low priority jobs within a
given bound and fully use the available sprinting budget.

In contrast to preemptive schedulers, we alter the resource
demand of lower- and higher-priority jobs, instead of evict-
ing lower-priority jobs upon the arrival of higher-priority
jobs. DiAS is our implementation of this design. It plugs
into existing big data processing engines to support differen-
tial approximation, computational sprinting and workload
deflation by means of dropping tasks.

3.1 Approximate Big Data Jobs

The aim of approximate computing in big data process-
ing [10, 18] is to solve the performance conundrum between
latency and accuracy requirements of analysis jobs. Instead
of processing all the input data, only a subset of data is chosen
to be processed to lower the overall computation demand and
reduce latency. Existing systems (e.g., ApproxHadoop [18])
put a significant engineering effort to enable dropping (map)
tasks and their assigned input data prior or during execution.
Figure 2 illustrates this task dropping strategy on a simple
job with 3 map and 2 reduce tasks, with the goal of attaining

3

!
"
time

a
rr

iv
a
l

processing engine

sc
he

du
le

r #

dropper

#

#

#

#

#

#

$

%

& & &

ta
sk

 d
efl

at
or

'
&

&&&&

!

diff. approx.

priority #1

priority #i

(hadoop HDFS

& & &&
priority #2

sprinter!

Figure 3. Schematics of differential approximation.

a given approximation level. In this example, we randomly
choose one map task and drop it before its execution. Task
dropping saves the overhead of fetching data and avoids
the execution of the dropped tasks. Nevertheless, while it
reduces the computational demand of jobs, it unavoidably
degrades the analysis accuracy. This precision loss depends
on both the analysis performed and the data, and can be
estimated offline as shown in Section 5.1.

3.2 Architecture of the DiAS prototype

Figure 3 depicts the architecture of DiAS. The key compo-
nents of DiAS are: (1) a set of job buffers for each priority,
indexed by k ∈ {0, . . . ,K}, (2) the task deflator that deter-
mines the approximation level θk and sprinting timeout Tk
for each priority k , and (3) the sprinter which temporarily
sprints jobs. Higher values of k indicate higher priority. The
deflator has two main functionalities: (i) to determine the
approximation level and sprinting timeout based on empiri-
cal/stochastic models as well as on performance and budget
thresholds, and (ii) to dispatch jobs from the priority buffers
into the processing engine. We first describe how the deflator
dispatches and evicts jobs and derive the analytical models
in Section 4.

Upon arrival, jobs are immediately dispatched to the cor-
responding buffer according to their priorities. Jobs queued
at each buffer are processed in a FCFS manner. The task de-
flator selects the job at the head of the highest non-empty
priority buffer, say k . This priority-k job with its correspond-
ing approximation level, θk , is sent to the processing engine,
which splits the job into multiple tasks on the cluster. To
avoid potential resource waste caused by eviction using pre-
emption, the execution across priority buffers of DiAS is
non preemptive. DiAS only dispatches jobs from the head of
the buffer to the processing engine when the previous job
completes, independent of the priority of newly arrived jobs.
Moreover, DiAS assumes that the processing engine is able
to drop tasks to achieve the target ratio θk . We note that as
DiAS aims to reshape the job workloads prior to entering
the processing engines, the design of DiAS is general and
compatible with different processing engines.
For our baseline results with preemption, DiAS also pro-

vides the ability to evict jobs from the processing engine. In
this case, as soon as any job arrives with a higher priority

than the job currently being processed, the job in the engine
is evicted back to the head of its buffer and the arriving job
is immediately sent in for execution.
In addition, DiAS can leverage computational sprinting

to further counter the effects on higher priority jobs stem-
ming from not preempting lower priority ones. If sprinting
is enabled, the deflator in parallel to dispatching the job
communicates to the sprinter the sprinting timeout Tk to
use. Once the timeout elapses, the sprinter will temporarily
accelerate the execution of the job.

3.3 Implementation

We implement the DiAS prototype in the Go programming
language and use Spark as big data processing engine. In
addition to priority buffers and the deflator, we also imple-
mented a workload generator and augment Spark with the
capability to drop tasks. To deliver the aforementioned func-
tionalities, DiAS is designed to be multi-threaded.

Deflator. The deflator consists of one dispatcher and one
monitor thread. When a job completes or a new job arrives,
the dispatcher thread selects which job to run and dispatches
it using the os.exec library. It does so by first creating a
cmd structure and then launches the process with Start().
When evicting jobs, this thread sends the SIGKILL to the
process using cmd.Process.Kill(). The monitor thread
surveils the running job, collecting its exit status via Wait()
and actively relays the completion/eviction of the job to the
dispatcher thread using a golang channel.

Sprinter. If sprinting is enabled, the sprinter handles a
sprinting timer for each dispatched job and tracks the re-
maining sprinting budget. When the timer fires, it uses DVFS
to temporarily accelerate the job execution by adjusting the
frequency of the CPU on the cluster nodes via the cpupower
utility. A job is accelerated until either its end or the depletion
of the sprinting budget. The sprinting budget is replenished
over time using a replenishing rate, e.g., 6 sprinting minutes
per hour [3]. The timeout is ignored if the job ends sooner.

Dropper. A Spark job typically analyzes a dataset stored
as files in HDFS. Each Spark job is translated into a DAG
of operations on Resilient Distributed Datasets (RDD) used
as input/output. The job execution proceeds in stages (i.e.,
periods of synchronization points). Each RDD is made of
multiple partitions, the number of which indicates the par-
allelism achievable by Spark, as each partition can be con-
currently executed by only one task. The size of a job is
thus conventionally defined by the number of RDDs and
their partitions (equivalently tasks). Each stage relies on
the findMissingPartitions() function to get the number
of partitions to be computed. To implement task dropping
in Spark, we modify findMissingPartitions() to return
only ⌈n(1 − θk)⌉ partitions out of n following the specifica-
tions of the deflator.

4

4 Modeling DiAS

To guide DiAS, we analytically derive the response time
distribution offered by the cluster to the incoming multi-task
jobs classified in multiple priorities. Jobs are classified in K
priorities, where a priority-k job has precedence over jobs
in priority levels l < k , for 1 ≤ l ,k ≤ K . According to the
DiAS architecture, jobs are served in FCFS order and each
job seizes all the resources in the cluster (or in the partition
used by the corresponding engine) to execute. This can be
viewed as a single server queue serving K priority classes.
We thus opt to employ the recent method proposed in [22],
which is capable of obtaining the response time distribution
and its moments for a fairly general priority queue with K
priority classes under both preemptive and non-preemptive
scheduling.
One key reason to choose [22] as the latency model for

DiAS is its support for Phase-Type (PH) job processing
times [28], which is a class of distributions that can cap-
ture fairly general behaviours. Further, PH distributions are
closed under a number of operations, a feature that we ex-
ploit to model the detailed job processing times of concurrent
tasks. Instead of using a given distribution to model the job
processing time, we resort to a bottom-up approach and
build a more detailed view at the task level or wave levels.
For a description of waves and their role in job execution see
Section 4.2 below. We thus exploit PH distributions to cap-
ture details of tasks and waves (i.e., no. of waves =⌈no . tasksno . slots ⌉)
within the job processing time and build upon recent results
on priority queues with PH components [22].
Background on the MMAP[K]/PH[K]/1 priority queue.

Horváth [22] analytically derived the latency distribution
for an MMAP[K]/PH[K]/1 priority queue, where process-
ing times follow PH distributions, differentiated for the K
job classes, and arrivals follow a Marked Markovian Arrival
Process (MMAP) with K different streams [28], one for each
priority class. This class of arrival processes can capture
fairly general behaviors, including correlations among ar-
rival streams or general inter-arrival times. The parameters
of an MMAP are K + 1 ma ×ma matrices (D0,D1, ...,DK),
where Dk holds the transition rates for class-k jobs, and
D0 ensures that the matrix D =

∑K
k=0 Dk is the generator

of a Markov chain. The simplest non-trivial example is the
marked Poisson arrival process, where ma = 1, Dk = λk ,
which is the arrival rate of class-k jobs, and D0 = −∑K

k=1 λk .
Assumptions and notations on the cluster and approxi-

mate/sprinting jobs. We assume the cluster, or the allocated
partition, is composed of C computing slots. Priority-k jobs
have nkm map and nkr reduce tasks, both of which are discrete
random variables withminimum value 1 andmaximum value
N k
m and N k

m , respectively. On average, the time to execute
a map task is 1/µkm and to execute a reduce task is 1/µkr . In
addition, the job execution may include an initial setup time
that lasts 1/µko time on average, and an intermediate shuffle

Table 1. Summary of notation.

Symbol Definition

C Number of computing slots
N k
m Max. number of map tasks in a priority-k job

N k
r Max. number of reduce tasks in a priority-k job

pm (t) Prob. that a priority-k job has t map tasks
pr (u) Prob. that a priority-k job has t reduce tasks
1/µkm Mean exec. time for map tasks in a priority-k job
1/µkr Mean exec. time for reduce tasks in a priority-k job
1/µko Mean setup time for a priority-k job
1/µks Mean shuffle time for a priority-k job
θkm Approximation ratio for map tasks in a priority-k job
θkr Approximation ratio for reduce tasks in a priority-k job
O Overhead stage

Mt Map stage with t map tasks left to process
S Shuffle stage

Ru Reduce stage with u map tasks left to process

stage that requires on average 1/µks time. We note that, when
sprinting is enabled, the service rates can be approximately
captured by the effective sprinting rates as a weighted av-
erage of the sprinted and non-sprinted execution times per
task and class k . Predicting these rates is complex [30]. We
assume that the effective sprinting rates are provided by an
oracle for each class k and timeout value. Moreover, as the
number of executors available is less than the number of
parallel tasks and executors comprise multiple cores, each
executor concurrently executes multiple tasks. Hence, our
current approach sprints all available cores at the same time
which is beneficial for applications consisting of tasks with
equal workloads. We leave the estimation of effective sprint-
ing rate for complex sprinting policies as future work. Table 1
summarizes the notation.

4.1 Task-level Model

For priority-k jobs, we set the task drop ratio to θkm for
map tasks and to θkr for reduce tasks. The effective num-
ber of map and reduce tasks is thus n̄km = ⌈nkm(1 − θkm)⌉ and
n̄kr = ⌈nkr (1 − θkr)⌉. Moreover, as the number of tasks is a ran-
dom variable, we let pkm(t) and pkr (u) be the probabilities
that a priority-k job has t map and u reduce tasks, where
1 ≤ t ≤ N k

m and 1 ≤ u ≤ N k
r . From this point on, we drop

the super-index k for clarity, but the definitions apply to all
job priorities making use of the appropriate index.

With the above definitions we can extend themodel in [31]
to incorporate the overhead O and shuffle stages S, as well
as to allow for a variable number of tasks. We thus let the pro-
cessing phase i keep track of the job current execution step,
where: (i) i = O indicates the job is in the initial setup (over-
head) stage; (ii) i =Mt indicates that t map tasks remain to
be completed, for 1 ≤ t ≤ N̄m ; (iii) i = S indicates the job is
in the intermediate shuffle stage; (iv) i = Ru indicates that
u reduce tasks remain to be completed, for 1 ≤ u ≤ N̄r . All
jobs start in stage O and their evolution is determined by

5

the transition rates from phase i to the next phase j, f (t , j),
defined as:

f (i, j) =

µopm(t), i = O, j =Mt̄ ,

Cµm , i =Mt , j =Mt−1, t ≥ C,

tµm , i =Mt , j =Mt−1, 2 ≤ t < C,

µm , i =M1, j = S,
µspr (u), i = S, j = Rū ,

Cµr , i = Ru , j = Ru−1,u ≥ C,

uµr , i = Ru , j = Ru−1, 1 ≤ u < C,

(1)

where R0 denotes the end of all reduce tasks and the job
completion.
In (1) the first row corresponds to a transition from the

initial setup stage O to the map stage for a job with t map
tasks, i.e., it actually starts with t̄ tasks due to early drop.
The next two rows show that the maximum parallelism is
C and that tasks finish one by one until the map stage is
completed. The next transition is to the shuffle stage S,
after which the job moves on to the reduce stage, where,
after dropping, a total of ū tasks must be executed if the
job has u reduce tasks. Since Nm and Nr are the maxi-
mum number of map and reduce tasks, the phase space is
P = {O,MN̄m

, . . . ,M1,S,RN̄r
, . . . ,R1}, and we can build

a transition matrix F with entries f (i, j) in (1) for i, j ∈ P.
Further, we define the vector ϕ = [1 0] as the initial phase
distribution, where 1 indicates that all jobs start processing in
phase i = O. The pair (ϕ, F) is thus a PH representation [28]
of the job processing time with Nm + Nr + 2 phases.

4.2 Wave-level Model

Whereas the just described model is very detailed in con-
sidering the evolution at the task level, it assumes that task
execution times follow an exponential distribution. General-
izing this assumption at the task level is very challenging as
it would require keeping track of individual tasks separately.
We thus take a different approach. We observe that tasks
tend to have fairly similar execution times [30], leading to an
execution in waves. For instance, a job composed of 40 tasks
executing in a cluster with 20 computing slots will start with
a first wave of 20 tasks executing in parallel. If these tasks
have fairly similar execution times, they will finish close to
each other, allowing the next 20 tasks to execute almost at
the same time, making up a second wave. This wave-level
model captures this behavior, having the job processing time
as a sequence of waves, each with a wave execution time.
Given C computing slots and a job made up of t and u

map and reduce tasks, respectively, its effective number of
map and reduce waves are w̄m = ⌈t̄/C⌉ and w̄r = ⌈ū/C⌉, re-
spectively. Recall that t̄ = ⌈t(1−θm)⌉ is the effective number
of map tasks to execute once a task drop ratio θm is applied.
Since waves are consecutive, we can model the execution
time of the d-th map wave as a PH distribution with vm(d)

 50

 100

 0 0.2 0.4 0.6 0.8

M
e
a
n
 P

ro
c
e
s
s
in

g
 T

im
e
 [
s
]

Drop Ratio

126−model
126−obs

147−model
147−obs

Figure 4. Validation of job processing times for different
datasets and priorities.

phases and parameters (αm(d),Am(d)), avoiding the exponen-
tial assumption and allowing for fairly general behaviors.
Moreover, we allow each wave to have a potentially differ-
ent execution time, as we also observed in our experiments
with state-of-the-art execution engines, e.g., Spark. We simi-
larly let the d-th reduce wave have a PH distribution with
vr (d) phases and parameters (αr (d),Ar (d)). Also, let the initial
setup stage have vo phases and parameters (αo ,Ao), and the
intermediate shuffle stage have vs phases and parameters
(αs ,As). We further define the exit rate vector ax = −Ax1
for x representing any of the stages considered. Since the
sum of independent PH random variables is also PH [28], we
represent the job processing time as a PH distribution with
v = vo +

∑wm
d=1vm(d)+vs +

∑wr
d=1vr (d) phases and parameters

(α ,A).
For clarity, consider the case where wm = wr = 2, i.e.,

both map and reduce stages are composed of 2 waves of
execution. The transition matrixA of the job processing time
for this case is:

Ao aoαm(1)qm(2) aoαm(2)qm(1)
Am(1) am(1)αm(2)

Am(2) am(2)αs
As asαr (1)qr (2) asαr (2)qr (1)

Ar (1) ar (1)αr (2)
Ar (2)

where qm(d) and qr (d) are the probabilities that a job re-
quires d waves of execution in the map and reduce stages,
respectively. These can be computed as

qm(d) =
dC∑

t̄=(d−1)C+1

∑
t : ⌈t (1−θ)⌉=t̄

pm(t),

where the inner sum accounts for the probability that a
job has t̄ effective map tasks after dropping, and the outer
sum accounts for all cases where the t̄ effective tasks can be
executed in d waves. Finally, the initial probability vector
can be written simply as α =

[
αo 0

]
, since all jobs start in

the setup stage, completing the PH representation of the job
processing time at the wave level.

6

4.3 Validation

We now illustrate the results obtained with the model against
those observed experimentally. We first consider two dif-
ferent datasets, for which we obtain map and reduce task
execution times from a profiling run. The details of experi-
ments can be found in Section 5. We also collect samples of
the overhead times, which we have observed to be depen-
dent on the data size. To keep profiling at a minimum, we
collect overhead times from two configurations only: one
where no task drop is performed, and one where 90% of
the tasks are dropped, which is the maximum drop ratio
we consider. Then, for a given drop ratio we determine the
associated mean overhead time by a simple linear interpola-
tion between these two extreme scenarios. Figure 4 shows
the observed job execution times (x marks) for several drop
ratios and two different datasets. It also shows the predicted
job execution times (o marks) obtained with the model from
estimations of the task execution time, the overhead, and
setting the task drop ratio. The results show that the model
accurately predict the job processing time as a function of
the drop ratio, with mean errors of 11.1% and 7.8% for the
two datasets shown. Similar results hold for other datasets
but we omit them in the interest of space.
We now employ the model to predict the job response

time, parameterizing the model with the same information as
above: mean task execution time and overhead. Also, we set
the arrival rate to achieve an 80% cluster utilization and test
several values for the drop ratio. Note that for low loads the
response times are similar to the processing times, which we
have shown above to be accurately predicted by the model.
We are thus interested in testing a high load scenario where
the model must be able to predict well both the processing
and waiting times. Further, we let high- and low-priority jobs
process different datasets, such that the average low-priority
job size is 2.36× larger (1117MB and 473MB, respectively),
and the ratio between low- and high-priority jobs is set to
9 (i.e., more low-priority jobs). This setup is similar to the
ones used in the experimental section. Figure 5 shows the
observed and predicted mean response times for both low-
and high-priority jobs. The model is clearly able to follow
the decrease in response times as the drop ratio increases,
with an average error of 18.7%.

We can therefore employ the model to determine whether
a certain configuration under a given workload can achieve a
preset latency objective. In fact, the model predictions can be
used to determine a minimum value for the drop ratio, such
that the latency degradation on the high-priority jobs is kept
limited. Together with a constraint on the accuracy error, it
is possible to provide the user with latency-accuracy pairs
for feasible drop ratios, each of which presents a different
tradeoff.

 0

 100

 200

 300

 400

 0 0.2 0.4 0.6 0.8

M
e
a
n
 J

o
b
 R

e
s
p
o
n
s
e
 t
im

e
 [
s
]

Drop Ratio

models−high
obs−high

model−low
obs−low

Figure 5. Validation of response times for different datasets
and priorities.

5 Evaluation

This section presents our extensive evaluation of the DiAS
prototype atop Spark engine. We compare it against priority
systems, being preemptive or non-preemptive without ap-
proximation and sprinting. The specific question we answer
in this section is: given the accuracy requirement of multi-
priority jobs, how much improvement can be obtained on the
average/tail response time of low priority jobs without any
resource waste and degradation of high priority jobs? We first
describe our experimental setup, the configuration used for
Spark and the workload details. Specifically, we focus on
big data applications of text and graph analytics. The num-
ber of priorities is defined based on the characteristics of
Google trace which has 12 priorities but is is dominated by
two to three classes that account for 89% of all tasks [12].
Therefore, although our proposed methodology can easily
be extended to larger number of priorities, we will focus on
the scenario of two and three priorities. We first evaluate the
design of differential approximation (§5.2), followed by the
full fledged design of DiAS - combining differential approxi-
mation and sprinting. While the differential approximation
improves the low priority jobs at a marginal degradation of
the high priority jobs, the complete DiAS (§5.3) can improve
the performance of both priorities, compared to standard
preemptive and non-preemptive systems.

5.1 Experimental Setup and Workloads

Spark processing engine. We rely on Spark v2.1 and a
cluster with one master and ten workers. Each worker uses
2 CPU cores, and 4 GB memory. Our machines consist of
Dell PowerEdge R330 servers equipped with Intel Xeon E3-
1270 v6 CPU, 64 hyper-threaded cores and 128 GB memory,
interconnected by a 10G Ethernet switched network on a
star topology. To store the data, we deploy HDFS (v2.8.0),
using one namenode and three datanodes [6].
Text analysis jobs.Wedeploy jobs that perform text anal-

ysis on XML data dumps collected from 164 StackEchange
websites [9] each dedicated to a different topic. The goal of
the analysis is to find the popularity of different words in
different topics by first parsing the XML to extract the posts

7

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e
a
n
 a

b
s
o
lu

te
 p

e
rc

e
n
t
e
rr

o
r

[%
]

Θm

Figure 6. Impact of task dropping on accuracy loss: the trend
of mean absolute error.

of users followed by counting the frequency of words. Each
Spark job processes one such data set. To take advantage of
the 20 cores in our Spark cluster, following Spark’s tuning
suggestions [2], we split each dataset into 50 RDD partitions.
Accordingly, Spark processes RDDs in multiple waves. Jobs
arrive following an exponentially-distributed inter-arrival
time and enqueued before being dispatched to the Spark
engine. We tune the arrival rate to obtain a 80% (50%) system
utilization based on offline profiling of our scenario. The job
response time is thus composed of the queueing time and
processing time. The main metrics of interests include the
average and tail response time, i.e., 95th , for each priority.

Graph analysis jobs. We run the triangle count algo-
rithm implemented by the Spark’s graphx [4] library. The
input dataset consists on the public Google web graph [29],
with 875’713 nodes and 5’105’039 edges. There are three
types of jobs: (1) to build the edge RDD, (2) to build the ver-
tex RDD, and (3) for the triangle count itself, composed by
six ShuffleMap stages and one Result stage.

Differential approximation. We specifically consider
scenarios of two and three levels of job priorities, with dif-
ferent characteristics, i.e., job sizes, arrival ratios across pri-
orities, and overall system load. As for the accuracy loss, we
compute the relative errors offline under different task drop-
ping ratios as shown in Figure 6. The mean absolute error
in percentage increases sub-linearly with dropping ratios.
When dropping 10% or 20% of map tasks, the relative errors
are roughly 8.5% and 15%, respectively. Therefore, in the
remainder of our evaluation section, we set the acceptable
relative error to 0 for high-priority jobs and to 8.5%, 15% and
32% for lower-priority jobs. This corresponds to evaluating
the latency impact of DiAS that drops 10%, 20% or 40% of
tasks in lower-priority jobs.

Differential sprinting. We use DVFS as the sprinting
mechanism to change the speed of the CPU. The CPU clock
frequency is initially set to 800MHz old and temporarily in-
crease it to 2.4GHz old when sprinting. These frequencies
were defined based on the limits supported by the machines
used, which also corresponds to a common setup [7]. Sprint-
ing reduces the execution time of high priority jobs by up to

 1

 10

 100

 1000

P NP DA
0/10

DA
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

Figure 7. Mean (solid bars) and tail (shaded bars) latency
improvement of two differential approximation variations
on a two-priority system. P : preemptive, absolute values.
NP : non-preemptive. NP , DA(0,100), and DA(0,20) as relative
difference to P .

60%, but increases the servers power consumption by 1.5x,
from 180W to 270W. In the following, we consider two types
of energy budgets: (1) limited sprinting, to sprint only 35%
of the execution time of high priority jobs, and (2) unlimited
sprinting, to sprint high priority jobs for their whole dura-
tion. Under limited sprinting high priority jobs sprint after
65 seconds. Under unlimited sprinting they sprint as soon as
they are dispatched.

Resource waste. With DiAS, differential approximation
and sprinting levels are applied on different priorities and
lower-priority jobs are never evicted upon arrival of a higher-
priority job. As a result, machine time is never wasted on
reprocessing evicted jobs compared to a preemptive priority
system. We define the resource waste as the percentage of
machine time used to re-process evicted jobs compared to
the total processing time.

5.2 Differential Approximation

5.2.1 Two-Priority System

We first show the effectiveness of differential approximation
on a reference setup, highlighting the difference of mean
and 95th latency for both high- and low-priority jobs when
compared to a preemptive and a non-preemptive priority
system denoted as P and NP , respectively. The three key
parameters in the reference setup are: (i) the ratio between
low- and high-priority jobs is 9 to 1, (ii) the average sizes of
low- and high-priority jobs are 1117MB and 473MB, respec-
tively, (iii) and the average system load is 80%. The param-
eters are set as close as to the workload characteristics of
Google trace [41]. Figure 7 summarizes the absolute results
of the preemptive priority setup, and its relative difference
compared to a non-preemptive priority setup, DA(0,10) and
DA(0,20). The subscript pair of DA denotes the task dropping
ratio for high- and low-priority respectively. We use solid
bars for the mean latency, while shaded bars are for the 95th
percentile latency. The resource waste is roughly 4% with
the preemptive priority policy.

8

 1

 10

 100

 1000

P NP DA
0/10

DA
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

 1

 10

 100

 1000

P NP DA
0/10

DA
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

 1

 10

 100

 1000

P NP DA
0/10

DA
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

(a) Equal job sizes (b) Much more high-priority jobs (c) 50% system load

Figure 8. Sensitivity analysis of differential approximation on mean (solid bars) and tail (shaded bars) latencies by changing
the ratios between high and low priority jobs: sizes, arrival rates, and the overall system utilization.

Under P , the mean latency of high-priority is better than
the low-priority job. This stems from the unbalance in the
queueing times: 0.03s versus 310s on average for high- and
low-priority jobs, respectively. This difference is smaller for
the 95th percentile. When using the NP model, where pre-
emption of low-priority jobs is not allowed, the performance
of low-priority jobs improves roughly by 20% at the cost of
increasing the latency of high-priority jobs by 80%. This is
because high-priority jobs have to wait for the low-priority
jobs in execution to finish before getting served. In contrast,
DA(0,20) can significantly improve the performance (roughly
65%) of both mean and tail latency of low-priority at only a
marginal (10%) increase in the mean latency of high-priority
jobs and an accuracy loss for low-priority jobs of 15%.
We further consider a use case scenario where it is pos-

sible to tolerate a 30% accuracy loss for low-priority jobs
while maintaining the latency of high-priority jobs under
100ms with no accuracy loss. The task deflator consults the
results in Figure 6 to determine the maximum drop ratios
to attain an accuracy target of 0% and 30% for high- and
low-priority jobs, respectively. Likewise, the deflator runs
the DiAS model (Section 4) and determines that a 20% drop
ratio for low-priority jobs is already within the 100ms limit
for the high-priority mean latency (as Figure 5 shows). We
can thus choose to employ DA(0,20) to hold both accuracy
and latency constraints, as confirmed by the experimental
results in Figure 7. This selection can be easily automated
by assigning weights to the latency and accuracy targets to
select among the feasible drop ratios.

5.2.2 Sensitivity Analysis

Our sensitivity analysis of differential approximation fiddles
with following parameters in the reference setup one at a
time: (i) high- and low-priority jobs of same size, (ii) ratio
between low- and high-priority jobs set 1 to 9, and (iii) a
total arrival rate resulting in a 50% system load. Figure 8
summarizes the results for these three scenarios. Due to
the rich information embedded in the figure, we focus on

comparing the latency gains of differential approximation
between the reference and new setup.

Similar job size for both priorities. Comparing Fig-
ure 8 (a) and Figure 7, the latency gain of differential ap-
proximation is significant, i.e., for low-priority up to 80%.
High-priority jobs improves too: both their mean and tail
latencies have better improvement than the reference sys-
tem. This can be explained by the fact that high-priority jobs
have shorter waiting time here than in the reference system.
In a non-preemptive setting, being in NP or DA, the maxi-
mum amount of queueing time for an arriving high-priority
job is a single execution of low-priority job, assuming the
high-priority queue is empty. Hence, smaller the low-priority
jobs, better the gain of differential approximation used in
the non-preemptive setup.

Relatively increased high- to low-priority job ratio.
Comparing Figure 8 (b) and Figure 7, the latency gain of
differential approximation is worse. Both the mean and tail
latency of high-priority increase considerably. Though the
average latency gain of low-priority remains the same as the
reference case, the tail latency gain decreases from 60% to
20%. As differential approximation only applies approxima-
tion techniques on low-priority jobs which account for 10%
of the total jobs, its effectiveness is limited. Hence, in the
scenario of dominant high-priority jobs, one shall activate
approximation for both priorities.

Relatively low system loads. Comparing Figure 8 (c)
and Figure 7, the latency gain of DA(0,10) is slightly worse,
but DA(0,20) maintains a similar gain as the reference setup.
Further, there is almost no performance degradation from
preemptive to non-preemptive system, shown by the results
of NP . When the system load is low, e.g., 50%, there is no
difference between preemptive and non-preemptive priority
systems because the engine is rarely occupied when higher-
priority jobs arrive. The gain of DA(0,20) on low-priority jobs
is thus mainly attributed to the reduction of processing time,
instead of queueing time. Moreover, the difference between
DA(0,10) and DA(0,20) can be explained by the fact that drop-
ping 20% of tasks reaches the critical mass to drop an entire

9

 1

 10

 100

 1000

P NP DA
0/10/20

DA
0/20/40

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Middle

Low

Figure 9. Differential approximation on three-priority sys-
tem: relative difference in mean (solid bars) and tail (shaded
bars) latency against preemptive priority (P).

wave. Overall, thanks to flexible approximation levels and
stochastic models of deflator, differential approximation can
effectively tradeoff analysis accuracy for improved mean/tail
latencies of high/low-priority jobs, against complex system
and workload dynamics.

5.2.3 Three-Priority System

We demonstrate the performance gains for differential ap-
proximation on a system with three priorities: high, medium
and low (Figure 9). The total arrival rate is 2.3 jobs/min
with rate ratio of high-medium-low priority of 1-4-5, re-
sulting in roughly 80% system load. For drop rates, we use
DA(0,10,20) and DA(0,20,40): the former introduces 8.5(15)% ac-
curacy loss for medium(low)-priority jobs, and the latter
introduces 15(32)% accuracy loss for medium(low)-priority
jobs according to Figure 6.

Similar to the two-priority scenario, we use the mean/tail
latency of the preemptive priority setup as comparison base-
line. The resource waste under P is roughly 16%. The remain-
ing three setups in Figure 9 incur in zero resource waste,
due to their non-preemptive nature. In terms of latency im-
provement, differential approximation is able to significantly
reduce the tail latency for all three priorities by up to 60%.
Differential approximation reduces the average latency more
for low-priority than medium-priority. However, such im-
provement of differential approximation comes at the cost of
slightly higher average latency of high-priority jobs and accu-
racy loss of low- and medium-priority jobs. In this particular
setup,DA(0,10,20) appears to achieve the most moderate trade-
off among accuracy/latency for high/lower-priority jobs.

5.2.4 Differential Approximation on Triangle Count

We further illustrate the gains of differential approxima-
tion when the computation requires several map and reduce
stages. Specifically, we run the triangle count algorithm im-
plemented in graphx library in Spark. Task dropping in this
case is performed on every ShuffleMap stage, for which we
consider drop ratios {1,2,5,10,20} for the low-priority jobs.

 1

 10

 100

 1000

P NP DA
0/1

DA
0/2

DA
0/5

DA
0/10

DA
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

Figure 10. Differential approximation on triangle count: rel-
ative difference in mean (solid bars) and tail (shaded bars)
latency against preemptive priority scheduler (P).

The total effective drop ratio is thus the result of applying
the stage drop ratio in each stage.

Figure 10 displays the gains obtained with differential ap-
proximation with respect to preemptive and non-preemptive
scheduling. Clearly, with fairly limited task dropping ratios
(5-10%) differential approximation is able to reduce the mean
latency of low-priority jobs by over 50%. Moreover, differen-
tial approximation reduces by a similar factor the tail latency
of both high and low-priority jobs.

5.3 Differential Approximation and Sprinting

Finally, we evaluate the complete design of DiAS, applying
different CPU sprinting on the high priority jobs and approx-
imation on the low priority jobs. We consider graph analytics
jobs, which has high and low priorities of the same job size
with a ratio of 3 to 7. We experiment the CPU sprinting
policy under two different energy budgets resulting in two
different scenarios. In the first scenario, i.e., limited sprinting
shown in Figure 11 (a), we consider a sprinting budget of
22kJ which roughly limits the jobs to run in high frequency
only for 35% of their execution time based on timeout. In the
second one, i.e., unlimited sprinting shown in Figure 11 (b),
we set the budget high enough such that the high-priority
jobs run at high frequency throughout their whole execution
time. We use a non-sprinted P system as the baseline for the
ease of comparison.

Latency gain. The complete DiAS of differential approx-
imation and sprinting shows promising performance. First,
the average and tail latency of both priorities improve under
limited and unlimited sprinting budgets, ranging between
35% to 90%. Overall, the latency gain is more prominent for
the tail latency, low-priority jobs, and unlimited sprinting.
In terms of absolute comparison, the improvement for low-
priority jobs is around 90%, whereas high-priority is between
40-60% depending on the sprinting budget. We stress that few
cases with increased average latency of high-priority jobs
observed in Section 5.2 are effectively countered by enabling
differential sprinting. The performance gains are therefore

10

 1

 10

 100

 1000

 10000

P DiAS
0/10

DiAS
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

 1

 10

 100

 1000

 10000

P DiAS
0/10

DiAS
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

R
e
s
p
o
n
s
e
 t
im

e
 [
s
]

D
if
fe

re
n
c
e
 [
%

]

High
Low

 1

 10

 100

 1000

 10000

P DiAS
0/10

DiAS
0/20

-80

-60

-40

-20

 0

 20

 40

 60

 80

E
n
e
rg

y
 [
k
J
]

D
if
fe

re
n
c
e
 [
%

]

Unimited
Limited

(a) Latency: limited sprinting (b) Latency: unlimited sprinting (c) Energy comparison
Figure 11. Complete DiAS on triangle count: latency and energy improvement against the preemptive priority scheduler (P).
In (a) and (b), the mean and tail latency are in solid bars and shaded bars, respectively.

Table 2. Average queueing and execution times of high- and
low-priority jobs under sprinted non-preemptive scheduling
(NPS), DiAS(0,10) and DiAS(0,20).

NPS DiAS(0,10) DiAS(0,20)
Queue [s] Exe.[s] Queue [s] Exe.[s] Queue [s] Exe. [s]

High 70.6 99.8 70.0 100.2 55.1 99.4
Low 378.9 148.5 286.42 139.0 238.0 131.1

more consistent for both tail and average latency, compared
to the approximation-only results.

Despite the focus of sprinting being on high-priority jobs,
the response times of low-priority jobs are also indirectly
improved. When compared to differential approximation
only, the average response time of DiAS(0,20) increases up to
55% for high-priority jobs but also up to 40% for low priority
jobs. Similarly, for DiAS(0,10) the increase goes up to 50%
and 53% for high- and low priority jobs, respectively. That
is, by reducing the processing time of high-priority jobs,
the queueing time of low-priority jobs is reduced, directly
affecting the response time for both types.

Latency decomposition. To unveil the exact perfor-
mance advantage of DiAS, we zoom into the performance
of the limited sprinting case and present the average queue-
ing and execution times for high- and low- priority jobs
in Table 2. We also apply the same sprinting policy on the
non-preemptive system, termed NPS . Due to sprinting, the
execution times of high-priority jobs are lower than the
low-priority jobs by at least 25%. Because of the 20% task
dropping in DiAS(0,20), the average execution time of the
low-priority jobs is the lowest among the three policies, i.e.,
around 131 seconds. The percentage of time that low-priority
jobs occupy the system thus reduces, avoiding longer wait-
ing time for both high- and low-priority jobs. As such, the
queueing times for both high- and low-priorities are lower
than NPS and DiAS(0,10).
Energy gain. In Figure 11(c), we summarize the normal-

ized energy consumption of DiAS against the P policy. For
both unlimited and limited sprinting, we temporarily in-
crease the CPU frequency for high-priority jobs. One would
expect a slightly higher energy consumption, compared to

the no-sprinting baseline. Surprisingly, for both unlimited
and limited cases, DiAS reduces the overall energy con-
sumption. The energy reductions stemming from differential
sprinting alone for the limited and unlimited budgets are
around 15% and 26%, respectively. We explain this result by
the significant reduction in execution times that outweighs
the power increase during sprinting.
The energy gain of DiAS can also be amplified by the

approximation ratios, i.e., DiAS(0,10) and DiAS(0,20). With
unlimited sprinting the gain increase to 28.2% and 31% for
DiAS(0,10) and DiAS(0,20), respectively. Similarly, for limited
sprinting we observe 18.3% and 21.6%. Higher reductions
are observed for higher drop rates, as dropping reduces the
computational load on the cluster. Overall, the design of com-
bining differential approximation and differential sprinting
can improve both the latency of both priorities and energy
consumptions across diversified systems scenarios.

We suggest the following procedure to determine the static
threshold used in the algorithm. To utilize the proposed mod-
els to predict the performance, one needs to first obtain the
input parameters of the proposed models through workload
profiling, that quantifies the relationship between file size
and execution time under a constant CPU frequency. Then,
one can exhaustively search through different combinations
of dropping ratios, priorities, and frequency thresholds. Our
proposed models can estimate the latency of such large com-
binations quickly. The values that optimize the tradeoff are
then selected for a given set of workloads. We note that such
searching procedure needs to be evoked upon every work-
load changes. DiAS considers a scenario where the workload
set is given and hence only consider the static threshold.

6 Related Work

A plethora of state-of-the-art systems developed novel
priority-aware or approximation/sprinting-enabled process-
ing platforms. We particularly highlight those focused on
managing priority, approximation frameworks and sprinting
strategies for Spark-like applications. Moreover, we summa-
rize efforts on computational sprinting and modelling that

11

address the challenging question – latency distribution for
multi-priority jobs composed of multiple parallel tasks.

Priority systems. Characterization studies [12, 13, 33]
on production big data systems show that multi-task jobs
are associated with multiple priorities and exhibit diverse
workload characteristics [13]. To ensure the performance
of (particularly high) priority jobs, the scheduler evicts low-
priority jobs to make resource available for high priority
ones, resulting in a significant resource waste [12] and la-
tency penalty on the low priority jobs [33]. Indeed, modern
big processing engines, e.g., Hadoop [1] and Spark [2], also
supportmulti-priority job scheduling. For instance, Hadoop’s
fair scheduler [5] can assign different weights on different
workloads to achieve soft priority, i.e., higher (lower) weights
on higher (lower) priority. Mesos [21] is a cluster manager
that support priorities across and within multiple processing
engines with a focus on fairness. Omega [36] is a two-level
priority scheduler designed for large-scale system. Recog-
nizing the need of evictions in priority systems, Natjam [14]
develops novel job and task eviction policies for a scenario of
two priorities that have different deadlines. DiAS proposes
an orthogonal solution that alters the jobs resource demands
and processing speeds for different priorities, rather than a
novel scheduling approach of tasks or jobs.

Approximation big data engines. To process vast and
fast amount of data influx, novel approximation-enabled sys-
tems are designed to meet the dual objectives of accurate
analysis and resource efficiency. In the context of MapReduce
paradigm, statistical sampling theory is commonly applied
to selectively process a subset of data either at the level of
input block [10] or task [27], before or after the execution
starts. BlinkDB [10], an approximate query processing frame-
work, provides accuracy guards in short response times by
leveraging statistical sampling theory to choose the inputs.
ApproxHadoop [18] develops a two-stage sampling strategy
for Hadoop [1] by either dropping the tasks or amount of data
per tasks, so as to minimize the overhead of data accessing.
To overcome the accuracy loss of sampling, IncApprox [27]
combines the task sampling and incremental computing, i.e.,
memorizing intermediate historical result. Grass [11] is a
scheduler that prioritizes jobs with higher approximation
level over lower levels for approximate analytics engine.
While approximate big data engines effectively trade ac-

curacy for the latency target and resource efficiency, they
only consider single-priority scenarios and often overlook
the latency models of complex dependency of jobs arrival.

Computational sprinting. Computational sprinting en-
ables bursts of peak processing in systems limited by dark
silicon. Sprinting mechanisms exist nowadays at all system
levels, from transistors and processors [35], to computer
systems [26], and datacenters [44]. Sprinting policies de-
cide when and what to sprint, e.g., phases within job exe-
cutions [43] and particular queries [25]. Several approaches
have been explored in the single priority scenario, from

simple heuristics [23], to queueing [32] and machine learn-
ing [30] models. DiAS extends the sprinting policies with
multi-priority scheduling and approximation schemes such
that the performance of all priorities can be improved.

Stochastic models for multi-priority jobs. Modeling
the latency for multi-priority jobs is a long standing chal-
lenge by itself because of the complex workload dynamics
across jobs and the interdependency among tasks. For prior-
ity systems, modeling studies can be categorized into single
vs.multi-server setus, preemptive vs. non-preemptive, and re-
sume vs. non-resume under preemptive scheduling. [20, 40]
employ matrix analytics method to analyze the jobs average
latency in the non-preemptive multi-server system, whereas
[38] focus on the state probabilities of preemptive multi-
server systems. Horváth [22] derives the latency distribution
in both preemptive and non-preemptive setting for single
server system. Jelenkovic [24] derives the stability condi-
tions for non-resume preemptive systems, highlighting the
high risk of instability.
The stochastic model in DiAS not only captures the en-

tire distribution of latency for multi-priority and multi-task
jobs but also further facilities the optimization of differential
approximation and sprinting for real system deployment.

7 Concluding Remarks

We propose a novel design of differential approximation and
sprinting, DiAS, to trades off the accuracy and additional
sprinting capacity for improving the efficiency of big data
engines, i.e., reduction of mean/tail latency without resource
waste. The design of DiAS is general, i.e., supports different
types of analyses and multiple priorities, and compatible
with existing MapReduce based processing engines that pro-
vide approximation mechanisms, e.g., task dropping, and
dynamic frequency scaling. We derive stochastic models to
guide the control of approximation and sprinting levels of
DiAS. We implement the prototype of DiAS atop of Spark,
with examples of text and graph analytics. Our extensive
evaluation results show that DiAS consistently reduces the
mean/tail latency of both low- and high-priority jobs (by
up to 90% and 60%, respectively) at roughly 15% relative er-
ror in the accuracy of low-priority jobs and more than 20%
energy reduction, compared to the state-of-art preemptive
scheduler.

Acknowledgment

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the LEGaTOProject (legato-project.
eu), grant agreement No 780681. This work has been partly
funded by the Swiss National Science Foundation NRP75
project 407540_167266.

12

legato-project.eu
legato-project.eu

References

[1] 2019. Apache Hadoop. http://hadoop.apache.org/.
[2] 2019. Apache Spark. http://spark.apache.org/.
[3] 2019. AWS burstable EC2 Instances. https://aws.amazon.com/blogs/

aws/low-cost-burstable-ec2-instances.
[4] 2019. GraphX. https://spark.apache.org/graphx/.
[5] 2019. Hadoop Fair Scheduler. https://hadoop.apache.org/docs/r1.2.1/

fair_scheduler.html.
[6] 2019. HDFS Architecture Guide. https://hadoop.apache.org/docs/r1.2.

1/hdfs_design.html.
[7] 2019. Property: TDP down frequency. https://en.wikichip.org/wiki/

Property:tdp_down_frequency.
[8] 2019. SNAP: Network datasets: Google web graph. https://snap.

stanford.edu/data/web-Google.html.
[9] 2019. StackExchange. https://anime.stackexchange.com.
[10] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,

Samuel Madden, and Ion Stoica. 2013. BlinkDB: queries with bounded
errors and bounded response times on very large data. In Eurosys.
ACM, 29–42.

[11] Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren,
Ion Stoica, Adam Wierman, and Minlan Yu. 2014. GRASS: Trimming
Stragglers in Approximation Analytics. In NSDI. 289–302.

[12] Derya Çavdar, Andrea Rosà, Lydia Y. Chen, Walter Binder, and Fatih
Alagöz. 2014. Quantifying the Brown Side of Priority Schedulers:
Lessons from Big Clusters. ACM SIGMETRICS Performance Evaluation
Review 42, 3 (2014), 76–81.

[13] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. 2012. Interactive
Analytical Processing in Big Data Systems: A Cross-Industry Study of
MapReduce Workloads. PVLDB 5, 12 (2012), 1802–1813.

[14] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin. 2013. Natjam: Design and Evaluation of Eviction Policies for
Supporting Priorities and Deadlines in Mapreduce Clusters. In SOCC.
ACM, 1–17.

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[16] Songchun Fan, Seyed Majid Zahedi, and Benjamin C. Lee. 2016. The
Computational Sprinting Game. In ASPLOS. 561–575.

[17] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and
David Patterson. 2010. Statistics-driven workload modeling for the
cloud. In IEEE ICDEW. 87–92.

[18] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. 2015. Ap-
proxHadoop: Bringing Approximations to MapReduce Frameworks.
In ASPLOS. 383–397.

[19] Md. E. Haque, Yong Hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremen-
tal Parallelism for Reducing Tail Latency in Interactive Services. In
ASPLOS. 161–175.

[20] Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, and Adam
Wierman. 2005. Multi-Server Queueing Systems with Multiple Priority
Classes. Queueing Syst. 51, 3-4 (2005), 331–360.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center. In NSDI, Vol. 11. 22–22.

[22] Gábor Horváth. 2015. Efficient analysis of the MMAP[K]/PH[K]/1
priority queue. European Journal of Operational Research 246, 1 (2015),
128–139.

[23] Chang-Hong Hsu, Yunqi Zhang, Michael A. Laurenzano, David Meis-
ner, Thomas F. Wenisch, Jason Mars, Lingjia Tang, and Ronald G.
Dreslinski. 2015. Adrenaline: Pinpointing and reining in tail queries
with quick voltage boosting. In HPCA. 271–282.

[24] P. R. Jelenkovic and E. D. Skiani. 2014. Is Sharing with Retransmissions
Causing Instabilities?. In ACM SIGMETRICS Performance Evaluation
Review, Vol. 42. 167–179.

[25] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott
Rixner, and Alan L. Cox. 2016. TPC: Target-Driven Parallelism Com-
bining Prediction and Correction to Reduce Tail Latency in Interactive
Services. In ASPLOS. 129–141.

[26] Toshiya Komoda, ShingoHayashi, Takashi Nakada, ShinobuMiwa, and
Hiroshi Nakamura. 2013. Power capping of CPU-GPU heterogeneous
systems through coordinating DVFS and task mapping. In IEEE ICCD.
349–356.

[27] D. Krishnan, D. Quoc, P. Bhatotia, C. Fetzer, and R. Rodrigues. 2016.
IncApprox: A Data Analytics System for Incremental Approximate
Computing. InWWW 16. 1133–1144.

[28] Guy Latouche and Vaidyanathan Ramaswami. 1999. Introduction to
matrix analytic methods in stochastic modeling. SIAM.

[29] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. 2009. Community
Structure in Large Networks: Natural Cluster Sizes and the Absence of
Large Well-Defined Clusters. Internet Mathematics 6 (2009), 29–123.

[30] Nathaniel Morris, Christopher Stewart, Lydia Y. Chen, Robert Birke,
and Jaimie Kelley. 2018. Model-driven computational sprinting. In
EuroSys. ACM, 38:1–38:13.

[31] Juan F. Pérez, Robert Birke, and Lydia Y. Chen. 2017. On the Latency-
Accuracy Tradeoff in Approximate MapReduce Jobs. In IEEE INFOCOM.
1–9.

[32] Zhan Qiu, Juan F. Pérez, and Peter G. Harrison. 2016. Variability-aware
request replication for latency curtailment. In IEEE INFOCOM. 1–9.

[33] Andrea Rosà, Lydia Y. Chen, and Walter Binder. 2015. Understanding
the Dark Side of Big Data Clusters: An Analysis beyond Failures. In
IEEE/IFIP DSN. 207–218.

[34] Andrea Rosà, Lydia Y. Chen, Robert Birke, and Walter Binder. 2015.
Demystifying Casualties of Evictions in Big Data Priority Scheduling.
ACM SIGMETRICS Performance Evaluation Review 42, 4 (2015), 12–21.

[35] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weiss-
mann, and Doron Rajwan. 2012. Power-Management Architecture of
the Intel Microarchitecture Code-Named Sandy Bridge. IEEE Micro 32,
2 (2012), 20–27.

[36] M. Schwarzkopf, A. Konwinskiand M. Abd-El-Malek, and J. Wilkes.
2013. Omega: flexible, scalable schedulers for large compute clusters.
In EuroSys. ACM, 351–364.

[37] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler,
et al. 2010. The Hadoop Distributed File System. In MSST, Vol. 10.
1–10.

[38] A. Sleptchenko, A. Harten, and M. Heijden. 2005. An Exact Solution
for the State Probabilities of the Multi-Class, Multi-Server Queue with
Preemptive Priorities. Queueing Systems 50, 1 (2005), 81–107.

[39] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In SOCC. 5:1–5:16.

[40] Adam Wierman, Takayuki Osogami, Mor Harchol-Balter, and Alan
Scheller-Wolf. 2006. How many servers are best in a dual-priority
M/PH/k system? Performance Evaluation Review (2006).

[41] John Wilkes. 2011. More Google cluster data. Google
research blog. https://code.google.com/p/googleclusterdata/wiki/
ClusterData2011_1.

[42] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Franklin, et al. 2016. Apache Spark: a unified
engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.

[43] H. Zhang and H. Hoffmann. 2016. Maximizing Performance Under a
Power Cap: A Comparison of Hardware, Software, and Hybrid Tech-
niques. In ASPLOS. 545–559.

[44] Wenli Zheng and Xiaorui Wang. 2015. Data Center Sprinting: Enabling
Computational Sprinting at the Data Center Level. In IEEE ICDCS. 175–
184.

13

http://hadoop.apache.org/
http://spark.apache.org/
https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances
https://aws.amazon.com/blogs/aws/low-cost-burstable-ec2-instances
https://spark.apache.org/graphx/
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://en.wikichip.org/wiki/Property:tdp_down_frequency
https://en.wikichip.org/wiki/Property:tdp_down_frequency
https://snap.stanford.edu/data/web-Google.html
https://snap.stanford.edu/data/web-Google.html
https://anime.stackexchange.com
https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1
https://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Resource Waste in Production Systems
	2.2 Priority Scheduling
	2.3 Computational Sprinting
	2.4 Processing Engines and MapReduce Jobs

	3 Differential Approximation and Sprinting
	3.1 Approximate Big Data Jobs
	3.2 Architecture of the DiAS prototype
	3.3 Implementation

	4 Modeling DiAS
	4.1 Task-level Model
	4.2 Wave-level Model
	4.3 Validation

	5 Evaluation
	5.1 Experimental Setup and Workloads
	5.2 Differential Approximation
	5.3 Differential Approximation and Sprinting

	6 Related Work
	7 Concluding Remarks
	References

