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Abstract—Response time variability in software applications can
severely degrade the quality of user experience. To reduce this vari-
ability, request replication emerges as an effective solution by spawning
multiple copies of each request and using the result of the first one
that completes. Most prior art focuses on the mean latency for systems
implementing replica cancellation, i.e., all replicas of a request are
canceled once the first one finishes. Instead, in this paper we develop
models to obtain the response-time distribution for “fast” systems, such
as web services, where replica cancellation is too expensive to be imple-
mented. Furthermore, we introduce a novel service model to explicitly
consider correlation in the processing times of the request replicas,
and design an efficient algorithm to parameterize the model from real
data. Extensive evaluations on a MATLAB benchmark and a three-tier
web application (MediaWiki) show remarkable accuracy, e.g., 7% (4%)
average error on the 99th percentile response time for the benchmark
(MediaWiki), the requests of which execute on the order of seconds
(milliseconds). The proposed analysis enables us to derive insights into
optimal replication levels under a wide variety of system scenarios.

1 INTRODUCTION
The ubiquity of cloud computing has enabled many
service providers to exploit almost unlimited resources
in a pay-as-you-go model. While this model offers many
advantages, it also poses novel challenges, some of them
related to the virtualized nature of the cloud offering. It
has been observed that virtualization can harm perfor-
mance [1], [2] owing to co-located virtual machines com-
peting for CPU, memory bandwidth or other resources.
This performance degradation leads to an increased vari-
ability in processing times, which impacts the application
latency, particularly affecting those users that face the
longest response times [3].

To cope with this increasing variability, concurrent or
speculative request replication has been proposed [3].
With concurrent replication, a number of replicas of each
request are spawned simultaneously, and the result of
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the first replica that completes is used. This approach can
therefore benefit from resource performance variability, as
two (or more) copies of a request may be submitted to
resources experiencing different levels of performance,
thus increasing the likelihood that a request receives
service from a fast server.

However, although replication has the potential to re-
duce service times, it may negatively impact the queueing
times due to the additional load introduced by repli-
cas, potentially leading to longer overall delays. In this
paper, we aim to capture the trade-off between these
two conflicting effects of replication and characterize the
scenarios under which replication improves latency tails.

1.1 Contributions
Different from existing works, in this paper we are
interested in evaluating replication for applications with
very short processing times, such as web services, which
process requests on the order of milliseconds. Due to the
short processing times, in these systems it is not feasible
to cancel all replicas of a request upon the completion
of the first one, which is a mechanism commonly used
to limit the additional load introduced by replication.
In fact, most existing modeling works [4]–[9] consider
the adoption of canceling. This assumption has the ad-
ditional benefit of simplifying the analysis thanks to the
synchronization introduced by the canceling mechanism
(all replicas of a request finish service at the same time).
Instead, we are interested in evaluating the impact of
replication without canceling, where such synchronization
does not exist. Thus, in this paper we derive a set of
stochastic models that can accurately predict the re-
quest response times when replication without canceling
is adopted.

While most works in this area focus on the mean
response time as the sole performance metric, our models
are able to determine the response-time distribution. This
feature enables us to evaluate the impact of replication
on different response-time percentiles, which, as we will
demonstrate, is far from homogeneous. Furthermore,
relying on this model we will show that the threshold
load, i.e., the maximum load under which replication is
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beneficial, can differ if the evaluation is based on the
response-time mean or on a specific percentile.

In developing the model we have emphasized its abil-
ity to capture a wide range of real system scenarios. In
particular, we are able to model highly varying process-
ing times by considering phase-type (PH) distributions.
We also consider Markovian arrival processes (MAP),
which generalize traditional Poisson arrivals to model
highly variable and correlated inter-arrival times.

Moreover, through experimentation we have identi-
fied that the processing times of replicas of the same
request can be correlated. To capture this behavior, we
introduce the novel concept of correlated hyper-Erlang
(CHE) distributions. We extend our model to incorpo-
rate CHE distributions when determining the response-
time distribution under replication. Moreover, we design
an efficient fitting method based on the Expectation-
Maximization algorithm to parameterize the CHE service
model from real data.

We demonstrate the models’ ability to predict the tail
response times through extensive experimentation on a
MATLAB benchmark [10] and on a standard three-tier
web application, namely, MediaWiki [11]. The resulting
average prediction errors for the 99th percentile of re-
sponse times are 7% and 4%, respectively. In particular,
the MediaWiki experiments demonstrate the ability of
the CHE service model to incorporate correlated ser-
vice times to accurately determine the response time
distribution. Leveraging the proposed analysis, we de-
rive insights into designing replication policies, i.e., the
optimal number of replicas and the threshold load –
the maximum load under which replication is beneficial.
Experimentation with the MediaWiki application corrob-
orates the capability of the proposed model to guide
replication decisions in real-life applications.

1.2 Related work
Request replication has been considered in [3]–[9], [12]–
[15] as an efficient way to combat the variability in
latency. Joshi et. al. [9] analyze the impact of replication
on the mean response time and the cost of computing
resources, and show that this impact depends on the
processing-time distribution. Vulimiri et. al. [12] propose
a queueing model to derive the mean response time as a
function of system utilization and service-time distribu-
tion, and approximate the threshold load under which
replication improves mean latency. Qiu and Pérez [4]–
[6] evaluate the impact of replication on the response-
time distribution in computing clusters, considering any
number of replicas and fairly general processing and
inter-arrival times.

Most existing works [3]–[9] consider the adoption of
canceling to limit the additional load introduced by the
replicas. In fact, it is common to assume that redundant
replicas can be canceled at no cost. In contrast, in this
work we focus on cases where canceling is hard or even
infeasible to implement because of the nonnegligible
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time required to cancel the replicas. This is particularly
relevant for fast systems where the canceling overhead
would be comparable in magnitude to the replica pro-
cessing time, such as web applications, whose requests
usually take milliseconds to respond. From an analytical
standpoint, the case we consider in this paper is more
challenging than its counterpart with canceling, where
replicas of a request always finish service at the same
time, adding a synchronization step that simplifies the
system dynamics. Thus a more detailed analysis is re-
quired to capture the asynchronous behavior caused by
the lack of canceling.

Also, the correlation among replicas of a request is
commonly ignored [4]–[6], [8], [12], with the exception
of [9], although this does not necessarily hold for many
applications where the request processing time depends
at least partially on the intrinsic details of the request and
is therefore reflected on all its replicas. In contrast, this
paper considers both cases of independent and correlated
processing times among replicas of the same request, and
we allow these processing times to follow fairly general
(PH) distributions. In addition, introducing MAP arrivals
enables us to capture bursty arrivals.

2 MOTIVATION AND SYSTEM SET-UP
Employing request replication to mitigate the latency tail
poses a number of challenges, which we now illustrate
by means of experiments conducted on a real-life web
application. We make use of MediaWiki [11], a standard
three-tier web application deployed on a private cloud.
Details of the application and its deployment can be
found in Section 8. The cloud deployment exposes the
application to large variations in its effective resource
capacity, caused by virtual machines (VM) co-located
on the same physical machine, a notorious drawback
of cloud computing [1], [2]. This resource capacity vari-
ability can cause large variations on the application
response times, as illustrated in Figure 1. Here we show
the complementary cumulative distribution (CCDF) of
request response times for two system set-ups: dense,
where the six MediaWiki VMs are co-located on three
physical servers; and sparse, where each MediaWiki VM
is hosted on a separate physical machine. In the densely
co-located cloud, the tail can be several times larger
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than the average response time (73.3 msec). For example,
the 95th and 99th percentiles are 117.2 and 321.7 msec,
respectively, while the 99.9th percentile is 713.0 msec,
which is 9.73× larger than the average. In the sparse
case, the mean is similar to that of the co-located case,
but the tail is much shorter, with the 99.9th percentile
being only 385.0 msec, which is 5.05× larger than the
average.

To cope with this variability, we implement request
replication to create r copies of each application request.
However, due to the fast dynamics (on the order of
milliseconds) of web applications, it is difficult to cancel
the outstanding requests upon completion of the first
one without incurring a high processing overhead. We
thus focus on replication policies that do not cancel
outstanding requests. Figure 2 depicts the response time
mean and tail percentiles when implementing between
1 and 3 replicas for an arrival rate of 10 requests per
second. Clearly, replication is effective in reducing the
latency tail, with reductions close to 20% with 2 replicas.
However, introducing a third replica hurts the tail even if
it improves the mean latency. This highlights the impor-
tance of developing analytic models able to compute the
latency distribution under replication, as those proposed
in this paper, and not just the mean.

A common assumption when modeling replication is
that the processing times of a set of replicas of the same
request are independent. Using measurements from the
MediaWiki application with an arrival rate of 10 requests
per second and 2 replicas, Figure 3 depicts a scatter
plot of the processing times of the replicas of each
request. Here we observe a large mass along the 45◦

line, indicating a strong correlation between the replicas’
processing times. Also, two other masses close to the
axes indicate that in many cases one replica has a long
processing time whereas the other has a short one. Thus,
the replica processing times are highly varying but not
independent, key features that shall be considered in the
analytical model proposed in the next sections.

2.1 Reference model
Based on the motivating case study presented earlier,
our reference model, shown in Figure 4, consists of a
central dispatcher and C distributed, homogeneous, and
independent servers. Requests arrive at the dispatcher
and join the next server that becomes available with first-
come first-served (FCFS) scheduling. For each arriving
request, r≥1 replicas asking for the same content are
initiated simultaneously and added to the dispatcher.
The request is considered complete as soon as one of its
r replicas completes service. The remaining r−1 replicas
continue their execution without being terminated. The
mean replica processing time is 1/µ, and we consider two
main types of replica processing times, namely, phase-
type and correlated hyper-Erlang, to capture the key
features of the processing times found in the case study.
Our objective is to derive the response-time distribution
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of requests analytically, for any given replication factor r,
number of servers C, and processing-time distribution.

Requests arrive at the system according to a
Markovian arrival process (MAP) with parameters
(ma, D0, D1). A MAP consists of an underlying Markov
chain with ma states, which evolves according to the
rates in matrices D0 and D1. The rates in D1 determine
the arrival rate in each state, whereas the rates in D0

mark transitions without arrivals. We also introduce the
notion of a job, which refers to the set of replicas belong-
ing to the same request. The job response time is the
difference between its arrival time and the completion
time of the first replica, which is the same as the request
response time.

The proposed model makes extensive use of phase-
type (PH) distributions [16]. A PH distribution is the
distribution of the time to absorption in a Markov chain
with n+1 states, where the first n states are transient and
the (n+1)th state is absorbing. The generator matrix of

such a chain can be written as
[
B b
0 0

]
, where the matrix

B holds the transition rates among the n transient states,
and the exit vector b=−B1 holds the rates at which the
chain jumps into the absorbing state. Here 1 is a column
vector of ones, and 0 a row vector of zeros. We denote
this distribution as PH(τ , B), where τ is the 1×n vector
holding the initial probability distribution with which the
chain starts in any of the n transient states.

PH distributions serve three purposes in this paper: (i)
in Section 3, they are used to model request processing
times more general than the standard exponential dis-
tribution; (ii) a subset of PH distributions is generalized
in Section 6 to model correlated processing times; and
(iii) the model we introduce obtains a PH representation
of the service-, waiting- and response-time distributions,
following the steps discussed in the next section.

3 INDEPENDENT PROCESSING TIMES

One can view the job response time as made up of two
parts: (i) a waiting time from arrival until the first replica
starts processing, and (ii) a service time from the service
start of the first replica until the earliest replica completes
processing. Accordingly, we divide the analysis to first
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Algorithm 1 Computing the response-time distribution

Stage 1: Find waiting-time distribution (swait, Swait)
a. Compute T : find S and A(jump), and solve (2)
b. Compute π(0): find Snot-all-busy, S(all)-(not-all),

Rnot-all-busy and Rall-busy, and solve (13)
c. Use (17) to find (swait, Swait)

Stage 2: Find matrix Sser and vector sser of the
service-time distribution (sser, Sser) as in Section 3.2
Stage 3: Combine waiting and service times as in (10)
to obtain the response-time distribution (sres, Sres)

obtain the job waiting-time distribution and then find
the job service-time distribution.

To obtain the waiting-time distribution we rely on the
techniques introduced in [17] for the standard multi-
server case, which we extend to consider requests repli-
cated r≥1 times. Our analysis also extends the methods
in [4]–[6], which consider the case where replicas are
canceled immediately after the completion of the first
one. The canceling mechanism facilitates the analysis as
all replicas of the same request are terminated at the
same time, freeing all resources used by the request
simultaneously. In fact, when the number of servers C is
a multiple of the number of replicas r, the analysis can be
carried out by simply grouping all servers in C/r groups
as all the servers in each group are synchronously seized
and released by the r replicas of an incoming request [4].

Instead, the case without canceling lacks the synchro-
nization mentioned above, requiring a more delicate
treatment, particularly when deriving the service-time
distribution. In contrast to standard queueing systems,
where the service-time distribution is known before-
hand, here the (stationary) job service-time distribution
depends on the overall system state. For instance, when
the system is lightly loaded, most jobs start service with
all their replicas, maximizing the benefits of concurrent
execution. Instead, when the system is heavily loaded,
most jobs will only be able to start with a single replica,
reducing the benefits of replication. Considering the
different conditions in which a job can start service is
therefore necessary to derive the (stationary) job service-
time distribution, and different from existing models that
consider non-replicated services or replicated requests
with canceling.

To help readers navigate the approach described in
the subsequent sections, we summarize the key steps of
computing the PH representation of the response-time
distribution in Algorithm 1. The notation used in the
algorithm will be introduced in the sections treating each
step. In the following, we assume that the replica service-
time distribution is PH(sR, SR) with mR phases, and refer
to a period during which all the servers are busy as an
all-busy period and to a period where at least one server
is idle as a not-all-busy period.

TABLE 1: Transition rates for S and A(jump) with PH
services

Matrix Condition From To Rate

S
w≥0 (n, w) (n+ej−ei, w) niSR(i, j)

w ≥ 1 (n, w) (n+ej−ei, w−1) niS
∗
R (i)sR(j)

A(jump) w=0 (n, 0) (n+ej−ei, r−1) niS
∗
R (i)sR(j)

3.1 The waiting-time distribution
The waiting time of a job is the time period between
its arrival and the time its first replica starts service.
To obtain the waiting-time distribution, we observe the
queue only during all-busy periods, as jobs that arrive dur-
ing a not-all-busy period see at least one idle server and
start service without waiting. In the same vein as in [17],
we define a bi-variate Markov process {X(t), J(t)|t≥0},
where the age X(t) is the total time-in-system of the
youngest job in service. Thus, the waiting time of a
job is equal to the value of the age X(t) at the time
instant when the job starts service. More specifically,
the age X(t) takes values in [0,∞), increasing linearly
with rate 1 if no job starts service, because the time-
in-system of the youngest job in service increases at
rate 1. Instead, when a new job starts service, a down-
ward jump in X(t) occurs as the new job becomes
the youngest in service and its age (time-in-system) is
equal to its waiting time. On the other hand, the phase
J(t)=(Dall-busy(t), A(t)) holds the phases of both the MAP
arrival process A(t) and the service process Dall-busy(t).
During an all-busy period, as a replica in service can
be in any phase 1≤i≤mR, we define the service state
to be Dall-busy(t)=(n1(t), . . . , nmR

(t), w(t)), where ni(t) is
the number of replicas in service phase i and w(t) is
the number of replicas of the youngest job waiting in the
queue, at time t. Thus Dall-busy(t) takes values in the set
Nall-busy={(n1, . . . , ni, . . . , nmR

, w)|ni∈{0, . . . , C},
∑mR

i=1 ni
=C, 0≤w<r}, of size mall-busy. As the number of arrival
phases is ma, the total number of phases during the all-
busy period is m=mamall-busy.

Let the vector π(x) hold the steady-state density of
{X(t), J(t)}, which has been shown [17] to have a
matrix-exponential form such that

π(x) = π(0) exp(Tx). (1)

We thus have to obtain the vector π(0) and the matrix
T . The m × m matrix T satisfies the nonlinear integral
equation [17]

T = SMAP +

∫ ∞
0

exp(Tt)A
(jump)
MAP (t)dt, (2)

where SMAP=S⊗Ima , A
(jump)
MAP (t)=A(jump)⊗ exp(D0t)D1,

Ima is the identity matrix of size ma, and ⊗ denotes the
Kronecker product. S and A(jump) are mall-busy×mall-busy
matrices that hold the transition rates of the service
process associated with transitions without and with the
start of a new job, respectively. Matrix S+A(jump) is thus
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the generator of the marginal service phase process dur-
ing the all-busy period. Table 1 summarizes the transition
rates of these two matrices, where n=(n1, . . . , nmR

) is the
state of the service process before the transition, and ei
is a zero vector with a one in the i-th entry. Here we
consider that any of the ni replicas in service phase i
undergoes a transition without service completion with
rate SR(i, j) or with a service completion with rate S∗R(i),
where S∗R=−SR1, allowing a new replica to start service.
In the latter case, if no replicas of the youngest job
are waiting in queue, a new job starts service and this
transition is recorded by the matrix A(jump).

Matrix T can be found by iteratively solving Eq. (2),
where each iteration involves the solution of a Sylvester
matrix equation [18]. Once T has been found, we ob-
tain π(0) to complete the matrix-exponential representa-
tion of π(x). After finding π(0) and T , we can obtain
the PH representation of the waiting-time distribution
(swait, Swait). We provide the details in Appendix A.

3.2 The service-time distribution
We now move to the second step of the procedure,
where we find a PH representation (sser, Sser) for the job
service-time distribution. To determine this distribution,
we follow the execution of a tagged job from the time
its first replica starts service until one of its replicas
completes service. In addition, when not all replicas of
the tagged job are in service, we need to keep track
of the non-tagged replicas in service, as their service
completion marks the start of the tagged replicas in
the queue. To define the service process let ni(t) be the
number of tagged replicas in service phase i, and oi(t) the
number of non-tagged replicas in service phase i, at time
t. The service process Dser(t) is thus (n1(t), . . . , nmR

(t))
when

∑mR

i=1 ni(t)=r (all tagged replicas in service)
and as {(o1(t), . . ., omR

(t)), (n1(t), . . ., nmR
(t))}, when∑mR

i=1 ni(t) < r (at least one tagged replica in the
queue). This process thus takes values in the set Nser =

N all
ser ∪ N

part
ser , where N all

ser = {(n1, . . . , nmR
)|0 ≤ ni ≤

r,
∑mR

i=1 ni = r} covers the states where all tagged replicas
are in service, and the remaining states are in N

part
ser =

{(o1, . . . , omR
), (n1, . . . , nmR

)|0 ≤ oi < C, 0 ≤ ni < r, 1 ≤∑mR

i=1 ni < r,
∑mR

i=1(oi + ni) = C}. We let mser = |Nser|,
mall

ser = |N all
ser|, and order Nser by placing the phases in the

set N all
ser first, and then those in N

part
ser .

The job service-time distribution PH(sser, Sser) is thus
defined by a 1 × mser vector sser with the distribution
of the initial job service phase, and an mser ×mser sub-
generator matrix Sser holding the transition rates among
all service phases. The nonzero entries of Sser are defined
in Table 2, where the vectors o = (o1, . . . , omR

) and n =
(n1, . . . , nmR

) hold the state of all non-tagged and tagged
replicas in service before the transition, respectively. The
first two rows consider tagged transitions, with and
without a service completion, when all tagged replicas
are in service. In the remaining rows, at least one tagged
replica is still in the queue. Rows three and four cover

TABLE 2: Transition rates for Sser

From To Rate Condition

n Service completion
∑mR

i=1 niS
∗
R (i) ||n||=r

n n + ej − ei niSR(i, j) ||n||=r

(o,n) (o + ej − ei,n) oiSR(i, j) ||n||≤r−1

(o,n) (o,n + ej − ei) niSR(i, j) ||n||≤r−1

(o,n) (o− ei,n + ej) oiS
∗
R (i)sR(j) ||n||≤r−2

(o,n) (n + ej) oiS
∗
R (i)sR(j) ||n||=r−1

(o,n) Service completion
∑mR

i=1 niS
∗
R (i) ||n||≤r−1

the cases of transitions without service completion for
non-tagged and tagged replicas, respectively. Instead, in
rows five and six a non-tagged replica completes service,
letting one tagged replica start service. The difference is
that in row five at least one tagged replica is left in the
queue after the transition, whereas in row six the last
tagged replica starts service. The last row considers the
service completion of a tagged replica when there still
are tagged replicas in the queue.

Having obtained Sser, it remains to determine the
vector sser, which holds the stationary probability that
a job starts service in each phase. In other words, sser is
the distribution of the service phase of the youngest job
in service immediately after its service starts. To obtain
sser we first define the mall-busy ×mser matrix M , which
holds the rates at which a downward jump in the age
process occurs in service phase i ∈ Nall-busy and causes
the new job to start service in phase j ∈ Nser. Thus,
the nonzero entries in matrix M correspond to service-
completion rates from service states where no replicas
of the youngest job in service are waiting in the queue
(w = 0), allowing a new job to start service with a single
replica. Therefore, the transition rate in M from state
(n, 0) to state (n− ei, ej) is given by niS

∗
R(i)sR(j). Also,

we define the probability γ that a job has to wait, given
by Eq. (18) in Appendix A. Considering the different
conditions in which a job starts service we obtain the
following results.

Lemma 1 (Busy start): The initial service phase for jobs
that must wait before starting service is given by

sbusy = γc1αbusyL(M ⊗D1), (3)

where

L =

∫ ∞
0

exp(Tu) (Ims ⊗ exp(D0u)) du, (4)

αbusy = −π(0)T−1 is the stationary distribution of the
phase, and c1 is a normalizing constant.

Proof: If a job finds all servers busy upon its arrival,
and therefore must wait, its initial phase must consider
the state of all non-tagged replicas already in service.
The initial phase of this job is therefore related to the
stationary distribution of the service phase after a down-
ward jump in the age process X(t), as these are the time
points at which new jobs start service. We know that
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the joint distribution of the age and the phase is π(x).
Furthermore, because of the matrix-exponential form, the
probability that the age reaches [x+u, x+u+ du), given
that the age is x and the phase is i, is independent of
x. Thus, the probability that level x is visited after a
downward jump and that this occurs by visiting service
phase j ∈ Nser is given by the jth entry of

c1

∫ ∞
0

∫ ∞
0

π(x) exp(Tu) (M ⊗ exp(D0u)D1) dudx. (5)

Here c1 is a normalizing constant, π(x) exp(Tu) is the
probability density of reaching an age in [x+u, x+u+du),
and exp(D0u)D1 is the probability density of observing
a downward jump of size [u, u + du). As stated above,
the matrix M holds the service-completion rates that
trigger a downward jump and the probability with which
the new job starts service in each phase. With αbusy =
−π(0)T−1, we can write Eq. (5) as c1αbusyL(M ⊗ D1),
where L is given by Eq. (4). Also, to ensure that (5) is
stochastic, we set c−11 = αbusyL(D1 ⊗M)1. As γ is the
probability that a job has to wait, such a job starts service
according to sbusy in Eq. (3).

Note that the matrix L has a similar form as P in
Eq. (15) in Appendix A and can thus be found by solving
an associated Sylvester matrix equation.

Lemma 2 (Full start): The initial service phase for jobs
that start service without waiting and without initiating
an all-busy period is given by

sall
not-busy = (1− γ)pr[sr 0

mser−mall
ser

1 ], (6)

where pr is given by Eq. (7) and 0ba is an a×b zero matrix.
Proof: A job arrives during a not-all-busy period

and starts service without waiting with probability 1−γ.
Among the arrivals in a not-all-busy period, all but
one start service with all their replicas, whereas the last
arrival initiates an all-busy period. Let η1 be the number
of arrivals in a not-all-busy period, thus E[η1]− 1 is the
expected number of jobs among them that find more than
r idle servers upon arrival. Thus the probability that a
job starts service during a not-all-busy period without
initiating an all-busy period is

pr = (E[η1]− 1)/E[η1]. (7)

E[η1] can be computed as in [17, Section 7.2]. When a
job finds more than r idle servers, it starts service in
state nr = (nr1, . . . , n

r
mR

) ∈ N all
ser, where nri is the number

of replicas that start service in phase i. We define the
vector sr of size mall

ser, with entries sr(nr) = p(nr),
where p(nr) is the multi-nomial probability given in
Eq. (12), for every phase vector nr ∈ N all

ser. The vector
sr thus reflects the random and independent selection
of the initial service phase by each of the r replicas
in the job. Thus, in this case, a job starts service with
probability vector sall

not-busy in (6) as the job does not wait
with probability 1−γ, finds more than r idle servers with
probability pr, and its r replicas start service according to

TABLE 3: Transition prob. for Rnot-all-busy, Rall-busy, and
Rser

Matrix From To Prob Condition
Rnot-all-busy n n+nr p(nr) ||n||+r<C
Rall-busy n (n+nw, r−w) p(nw) ||n||+r≥C,w=C−||n||
Rser n (n,nw) p(nw) ||n||+r≥C,w=C−||n||

sr. Note that vector sr is assigned to the first phases as
these correspond to the set N all

ser ⊂ Nser, where the tagged
job has all its replicas in service, while the remaining
entries of sall

not-busy are zero.
Before considering the final case, we define an

mnot-all-busy × mser matrix Rser, the (i, j)th element of
which holds the probability that a job that initiates an
all-busy period starts service in phase j ∈ Nser given
that the service phase was i ∈ Nnot-all-busy just before its
arrival. The entries of matrix Rser are shown in Table 3,
illustrating the start of a new job with w replicas in phase
nw with probability p(nw) given by Eq. (12).

Lemma 3 (Partial start): The initial service phase for
jobs that start service without waiting and initiate an
all-busy period is given by

s
part
not-busy = (1− γ)(1− pr)c2π(0)PQ−1not-all-busy(Rser ⊗D1),

(8)
where pr, P , and Qnot-all-busy are given by
Eqs. (7), (15) and (14), respectively, and c2 is a
normalizing constant.

Proof: From the proof of Lemma 2, with probabil-
ity (1−γ)(1−pr) a job finds 1≤w≤r idle servers, starts
service with its first w replicas, and initiates an all-busy
period. In this case the initial service phase of the job
is equal to the distribution of the service phase at the
beginning of an all-busy period, which is given by

c2π(0)

∫ ∞
0

exp(Tu)S∗(u)Q−1not-all-busy(Rser ⊗D1)du,

where c2 is a normalizing constant that ensures that
the vector is stochastic. This expression considers that
the age during an all-busy period is u with probabil-
ity density π(0) exp(Tu), and a transition according to
S∗(u) triggers the beginning of a not-all-busy period.
The matrix S∗(u) = S(all)-(not-all) ⊗ exp(D0u) captures that
the next arrival occurs after u time units, such that a
service completion ends the all-busy period. Next, the
system evolves according to the sub-generator Qnot-all-busy
in Eq. (14), until an arrival finds at most r idle servers,
initiating an all-busy period and selecting its initial ser-
vice phase according to Rser⊗D1. Note that we can make
use of the integral term P , defined in Eq. (15), to re-
write this expression as c2π(0)PQ−1not-all-busy(Rser ⊗ D1),
and c−12 = π(0)PQ−1not-all-busy(Rser⊗D1)1 makes this vector
stochastic. As a result, the initial service phase of a job
that initiates the all-busy period is distributed according
to spart

not-busy in Eq. (8).
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From the results above, the initial distribution of the
job service phase is given by the following theorem.

Theorem 1: The stationary distribution of the job initial
initial service phase sser is given by

sser = sbusy + sall
not-busy + s

part
not-busy. (9)

3.3 The response-time distribution
We can now put together the PH representations of
waiting and service times to obtain the PH representation
(sres, Sres) of the response-time distribution as

sres = [swait, sall
not-busy + s

part
not-busy],

Sres =

[
Swait (−Swait1)sbusy/γ

0
mamall-busy
mser Sser

]
.

(10)

Note that to define vector sres we make use of the
sall

not-busy and spart
not-busy vectors in Eq. (9), which cover the

cases where a job starts service without waiting. Other
jobs must first undergo a waiting time, starting with
vector swait, after which they start service according to
vector sbusy/γ, where γ is used to re-normalize the vector
to be stochastic. With this PH representation, we can
directly compute the response-time CDF, percentiles, and
moments.

Remark 1: From the previous description it is clear that
the sets Nall-busy, Nnot-all-busy, and Nser grow large rapidly
with the number of phases mR and the number of servers
C. We can therefore extend the numerical methods in [19]
to efficiently compute the matrix T , the vector π(0), as
well as moments and percentiles of the response-time
distribution. Appendix D highlights the key ideas behind
this solution method.

4 VALIDATION
To test the accuracy of the model introduced in the
previous section, we have implemented replication for
a simple MATLAB benchmark application, which is exe-
cuted on a multi-processor host where each processor
plays the role of a server in the model. This section
describes the experimental set-up and results.

4.1 Experimental Set-up
We have implemented replication for a MATLAB bench-
mark application in which requests arrive to a central
dispatcher that keeps a request queue and allocates the
first request in the queue to the next available worker.
Workers are mapped to independent processors such
that the system operation follows the reference model
introduced in Section 2.1. In particular, we employ the
MATLAB blackjack benchmark [10], where each request
emulates a game of blackjack that consists of a pre-
defined number of blackjack hands. This enables us to
modify the distribution of the request execution time by
altering the distribution of the number of hands.

In our set-up requests are generated according to a
Poisson or a MAP process. We use MAPs to consider
arrivals with high variability and auto-correlation, and
we set the squared coefficient of variation (SCV)1 of the
inter-arrival times to 10 and the decay rate of the auto-
correlation function to 0.5. To set the request execution
time we fix the mean number of hands to 2000 per
request, and generate the number of hands according
to three PH distributions, namely, exponential (Exp), 2-
phase Erlang (ER2), and hyper-exponential (HE2). The
random variates generated are rounded to obtain an in-
teger number of hands. The SCV for ER2, Exp, and HE2 is
0.5, 1, and 10, respectively, showing an increasing degree
of variability. We use the methods of [20], [21] to obtain
PH and MAP representations with these moments. In
each experiment we run the benchmark ten times, each
time executing a total of 5000 requests, and compute
the response time percentiles and their 95% confidence
intervals.

4.2 Performance Prediction
We ran the benchmark application on an Intel Core i7-
3770 machine with 4 cores running at 3.4 GHz, and 16
GB of memory, launching one worker per core. Running
the application without replication we obtain a mean
processing time of 0.52 sec, which we use to parameterize
the model. Setting the arrival rate to 1 request per second
we obtain a load of 0.13. We compare the measured
and the predicted response times in Figure 5, where
each experiment is labeled by a tuple of (arrival process,
processing-time distribution, number of servers), and we
denote benchmark results by B and model results by M
in the legend. Under Poisson arrivals and exponentially-
distributed processing times, as in Figure 5(a), our model
shows remarkably good prediction results for replication
factors r=2, 3 and 4. For instance, the average error for
the r=2 case is only 2.72%. Focusing on the r=2 case,
Figure 5(b) considers more general request processing-
time distributions, ER2 and HE2, where we observe
that our model is also accurate for systems with non-
exponential processing times. Similarly, replacing Pois-
son arrivals by MAP, Figure 5(c) shows that our model
predicts results well even under highly varying and auto-
correlated arrivals.

We have also deployed the application on a shared
cluster made of 4 Intel Xeon E5-4650 machines, with
a total of 32 cores running at 2.70 GHz, and 512 GB
of memory. Here we deploy 20 workers and set the
arrival rate to 4 requests per second. With a measured
mean request execution time of 0.71 sec, we achieve
a utilization of 0.14. Figure 5(d) displays the results
for this case, under Poisson arrivals and exponentially
distributed processing times, where we observe that our
model predicts the entire response-time distribution well,

1. SCV = V ar[Y ]/E[Y ]2 for a random variable Y , where V ar[Y ]
and E[Y ] are the variance and expected value of Y , respectively.
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Fig. 5: Experimental validation with the MATLAB benchmark on response-time percentiles. Each experiment is labeled
by a tuple of (arrival process, processing-time distribution, number of servers). B and M denote results obtained from
the benchmark and the model, respectively.
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Fig. 6: Percentile improvement.

showing a good prediction capability under a high level
of parallelism.

5 INSIGHTS REGARDING REPLICATION
The excellent accuracy of the proposed model enables
us to explore a large experimental space efficiently and
derive insights regarding replication. Particularly, we aim
to answer two key questions: (i) when can replication
improve the performance and to what extent; and, (ii)
what is the maximum baseline load for replication to
improve the response times compared with the baseline.

5.1 The Impact of Replication
For the results in this section we consider a system with
C=20 servers, Poisson arrivals and two processing-time
distributions, namely, ER2 and HE2, defined in Section 4.
The mean processing time is set to 1 sec, and the arrival
rate is set to achieve a baseline load of 0.2. Figure 6
depicts the relative improvement for each percentile p
in the range {10, 20, . . . , 90, 99, 99.9}, comparing the
response times obtained with replication levels r=2, 3
and 4 against those without replication. For r=2 and 3,
the case under ER2 services, as shown in Figure 6(a),
has a relatively smooth behavior, with the improvement
increasing slightly with the percentile. In contrast, for
HE2 services we observe large peaks in the tail. For
instance, for r=3 the improvement on the tail is as high
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Fig. 7: Threshold load.

as 95%, while the average improvement is around 60%.
We have observed a similar behavior in other set-ups,
indicating that replication is effective in reducing latency,
particularly the tail of the latency distribution. While
the improvement increases from r=2 to 3 for all the
percentiles, it decreases when r increases to 4, especially
for the tail under ER2 services, and between the 50th

and 90th percentiles under HE2 services. In fact, having 4
replicas is harmful for the 90th percentile under HE2 ser-
vices, as the improvement is -5.86%. Thus, care must be
taken in evaluating the specific percentiles of interest as
the effect of replication is nonuniform over the response-
time distribution, to the point that it may benefit some
percentiles while hurting others. Also, the service time
distribution must be adequately characterized as it has a
large impact on the benefits of replication.

5.2 The threshold load

We now turn to find the threshold load, that is, the maxi-
mum baseline load under which replication is beneficial.
Here we illustrate our main observations by means of
some example set-ups, but we have observed similar
behaviors in many other configurations. Note that, for a
replication factor r, the baseline load is upper bounded
by 1/r, as introducing r replicas in a system with a
baseline load larger than 1/r would make it unstable.
To determine the threshold load, we rely on the golden
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section search method [22]. We summarize our key find-
ings in the following.

1. The threshold load is nonuniform along the res-
ponse-time distribution. Figure 7(a), where we assume
20 servers and HE2 services with a mean processing time
of 1 sec, shows how the threshold load changes when
evaluating different response-time metrics. Comparing
the first two cases, which assume MAP arrivals, we
observe that the threshold load is always larger if we
evaluate the 99th percentile rather than the mean. As a
result, a decision to replicate based solely on potential
gains for the response time tail may actually have a
negative effect on the mean. For instance, in this set-
up we find that under a load of 0.4 the 99th percentile
decreases by 20% with the introduction of one replica,
while the mean increases by over 90%. This highlights
the importance of explicitly considering the response-
time distribution, and the targeted percentiles, when
evaluating a replication strategy.

2. The threshold load decreases with the variability
and auto-correlation of the arrival process. Replacing
MAP arrivals by Poisson, as shown in the third case in
Figure 7(a), we observe a large increase in the threshold
load. For instance, for r=2, the threshold load increases
from 0.38 under MAP arrivals to 0.46 under Poisson
arrivals. This is caused by the high burstiness of the
MAP process, as replication during bursty periods in-
creases the probability of causing a high utilization, and
thus longer delays. Thus, results based on the Poisson
assumption, when the actual arrival process displays
high variability and/or auto-correlation, can lead to the
wrong decision of introducing replication when it is not
beneficial.

3. The threshold load increases with the number of
servers. Figure 7(b) shows the effect of the number of
servers on the threshold load, using the 95th percentile as
the decision-making metric, under Poisson arrivals and
Exp services with mean service rate µ = 1. Clearly, the
threshold of the 5-server case is smaller than that of the
20-server case. In particular, when introducing 2 replicas,
the threshold load for the 5-server case is 0.35, whereas
it is 0.46 for the 20-server set-up. Thus, more servers
provide more flexibility to benefit from replication.

In conclusion, the threshold load decreases with the
number of replicas as well as with the variability and
auto-correlation of the arrival process, but increases with
the number of servers.

6 CORRELATED PROCESSING TIMES
As illustrated in Section 2, replicas of a request display
similarities in their processing times. As the model we
have introduced assumes independent processing times,
these similarities have not been considered. In fact, the
independence of processing times is a standard assump-
tion in queueing models, and there are few results for
correlated processing times. When such a correlation
is considered, as in [23], it is modeled as a general

correlation between the processing times of successive
requests, whereas here we are interested in correlating
the processing times of the replicas of the same job. We
thus introduce a model that explicitly captures the corre-
lation among replica processing times and, importantly,
fits within the analysis framework defined in Section 3.

To model correlated processing times within a Marko-
vian model, we introduce the concept of correlated
hyper-Erlang (CHE) distributions. Hyper-Erlang distri-
butions [24] model convex combinations of Erlang dis-
tributions and are a sub-class of PH distributions. Here
we extend this set of distributions to incorporate a de-
pendence between replicas of the same job. Let a CHE
distribution be characterized by a set of B branches B,
the probability αi of choosing branch i ∈ B, the number
of exponential phases hi in branch i ∈ B, and the rate λi
in each phase of branch i ∈ B. These are the parameters
that characterize a standard hyper-Erlang distribution.
The key difference here is that, while each job is allowed
to select a branch independently, all replicas of a job must
select the same branch. To model this behavior, we let the
first replica of a job select branch i ∈ B with probability
αi, and force all other replicas from the same job to
select the same branch as the first replica. With these
definitions, we extend the model of Section 3 to handle
this modified service process. We provide the details in
Appendix B.

7 FITTING CORRELATED PROCESSING TIMES
The CHE service-time model introduced in Section 6
allows the r replicas of a job to be correlated in the sense
that all of them select the same Erlang branch of the CHE
distribution. The benefits of the CHE service model can
only be exploited as long as we are able to fit the model
parameters from a data trace. While fitting methods
exists for general PH distributions [25] and some of
its sub-classes [24], [26], no such method exist for the
CHE service model since this is the first time this model
is proposed. In this section, we propose a maximum-
likelihood method for this purpose, based on the Expec-
tation Maximization (EM) algorithm proposed by Demp-
ster et al. [27]. Because our analysis method obtains the
response-time distribution, its ability to provide accurate
results depends on capturing the processing-time distri-
bution well. As a maximum-likelihood approach consid-
ers the overall processing-time distribution, it appears
better suited than the other widely adopted class of
fitting method, moment matching [20], which captures
only the first few moments. Also, the popularity of the
EM method for PH distributions is due to its ability
to handle mixtures of distributions, which we can also
exploit for CHE distributions.

We assume a trace D={x1, . . . ,xD}, where each of the
D observations is a tuple xd=(x1d, . . . , x

r
d) holding the

processing times of the r replicas of a job. From this
trace, we want to determine the entire set of parameters
of the CHE model (B, h1, . . . , hB , α1, . . . , αB , λ1, . . . , λB).
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However, and similar to [24], we split this problem
in two. First, we assume the number of branches B,
and the number of phases hi in each branch is known.
Thus, we focus on determining the parameters Θ =
(α1, . . . , αB , λ1, . . . , λB), that is, the probability αi of
choosing each branch and the corresponding Erlang rate
λi, for i ∈ B. Later in this section, we consider how to
determine B and hi.

The basic idea behind the EM algorithm is to start
with an initial guess of the parameters Θ̂. We then
iterate to obtain new values of Θ̂ that maximize the log-
likelihood function by following the derivation detailed
in Appendix C. Specifically, we compute δ(b|xd, Θ̂), the
probability that branch b is selected given data xd, and
estimates Θ̂, which is the expectation step in the EM
method. In the optimization step, we obtain the branch
selection probabilities and the Erlang rates as

αb =
1

D

D∑
d=1

δ(b|xd, Θ̂),

λb =
rhb

∑D
d=1 δ(b|xd, Θ̂)∑D

d=1 δ(b|xd, Θ̂)
∑r
j=1 x

j
d

.

(11)

As evidenced in this last expression, derived in Ap-
pendix C, the key characteristic of this method, and what
makes it different from existing ones, is that it considers
each sample xd as an r-tuple, and these r processing-
times samples are tied by the selection of the same Erlang
branch, in agreement with the CHE model.

We are now ready to state the EM algorithm for the
CHE service model, summarized in Algorithm 2. The
algorithm requires the total number of phases mR, the
data D, and a stopping criterion ε. As mR is equal to the
sum of the number of stages in all branches,

∑
i∈B hi,

the algorithm determines all possible combinations for
the number of branches and number of stages in each
branch (B, h1, . . . , hB), as in [24] for the independent
hyper-Erlang case. For each possible combination, it then
executes the EM steps derived in Appendix C, starting
from an initial guess for the parameters and iterating
until the difference between two successive sets of es-
timates in Eq. (11) is less than the pre-defined limit
ε. Once the estimates have been found, it computes
the log-likelihood and compares it against the best one
found so far, keeping the set of estimates Θ∗ with the
highest log-likelihood, which is returned at the end of
execution. Note that considering all possible combina-
tions (B, h1, . . . , hB) for a given number of phases mR

is feasible as long as this number is moderate. Given
that the CHE service model is to be used for analysis as
described in Section 6, we are actually interested in small
to moderate values for mR, and the full enumeration is
thus feasible. In Section 8, we illustrate how this method
is able to capture the correlation structure that emerges
in the processing times of request replicas from a real
system.

Algorithm 2 EM algorithm for the CHE service model

Require: Data: D, Number of phases: mR, ε
1: S = {(B, h1, . . . , hB)|

∑B
b=1 hi = mR}

2: bestLH =∞
3: for (B, h1, . . . , hB) ∈ S do
4: Initial guess Θ̂ = (α̂1, . . . , α̂B , λ̂1, . . . , λ̂B)
5: diff = 1
6: while diff > ε do
7: Compute δ(b|xn, Θ̂), b = 1, . . . , B, d = 1, . . . , D

as in (21), (19)
8: Compute αb, λb, b = 1, . . . , B as in (11)
9: diff = max |Θ̂− (α1, . . . , αB , λ1, . . . , λB)|

10: Θ̂ = (α1, . . . , αB , λ1, . . . , λB)
11: end while
12: Compute logL(Θ̂|D) as in (20)
13: if logL(Θ̂|D) > bestLH then
14: Θ∗ = Θ̂
15: bestLH = logL(Θ̂|D)
16: end if
17: end for
18: return Θ∗

8 EVALUATION ON MEDIAWIKI
In this section, we evaluate the capability of the proposed
model to predict the response-time distribution of a real-
life application, MediaWiki, and show how our proposed
analysis can guide the selection of optimal replication
factors. We first present the experimental set-up, fol-
lowed by extensive experiments.

8.1 Set-up
Our private cloud testbed is composed of eight identical
physical servers, seven used to run the experiments
and one used as experiment orchestrator and repository.
Each server is equipped with 32 cores, 128 GB DDR4
RAM, six 1-TB solid state disks in RAID5, and two 10-
Gigabit Ethernet adapters. We use MediaWiki, the open
source platform used to run the Wikipedia website, as a
representative application in the cloud [11]. MediaWiki is
a latency-sensitive three-tier web application composed
of Apache (v2.4.7) plus PHP (v5.5.9) as application server
frontend, Memcached (v1.4.14) as in-memory key-value
store and MySQL (v5.5.40) as database backend. In addi-
tion, we use an in-house dispatcher written in Go, which
replicates and distributes HTTP requests. We deploy a
MediaWiki cluster consisting of seven VMs configured
with two virtual CPUs and 4 GB of RAM. Six VMs run
a complete stack of all three tiers, and one VM is used
as the dispatcher. We deploy the cluster in two set-ups:
(i) dense, six VMs on three physical servers, each server
holding two VMs; and (ii) sparse, each VM hosted on
a separate physical server. The average processing time
per request for each MediaWiki VM is 1/µ = 72.98 msec.
Requests are generated with httperf [28], an open-loop
workload generator. Due to the space limit, we only
present the results for the dense set-up in the following.
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Fig. 8: Experimental validation with the MediaWiki.
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Fig. 9: Optimal replication factor: measurement
vs. model.

Upon receiving a request, the dispatcher immediately
initiates r replicas of the same request and dispatches the
replicas to any available VM, with FCFS scheduling. The
dispatcher ensures that the maximum number of replicas
at each VM is one and that the outstanding requests all
wait at the dispatcher. We note that this is a degenerated
set-up, whereas the more general set-up immediately
forwards the requests to VMs, each of which can hold
multiple requests locally.

To emulate performance variability in the cloud, par-
ticularly the public cloud, we artificially spawn neigh-
boring workloads following Poisson arrivals and expo-
nential run times. The specific neighboring workload
used is fluidanimate, a CPU-intensive benchmark from
PARSEC 3.0 [29]. Each MediaWiki is co-located with
such a neighbor, and we keep the average active time
of neighboring workloads around 50% of the MediaWiki
experiment time using a mean inter-arrival time of 60 sec
and a mean runtime of 30 sec.

8.2 Results
We validate our proposed analysis against seven load
scenarios, considering Poisson arrivals with mean arrival
rates λ of 3.33, 5, 6.67, 10, 20, 30 and 40 requests per
second, thus achieving a baseline load of 0.04, 0.06, 0.08,
0.12, 0.24, 0.36 and 0.48 without replication, respectively.
For each combination of arrival rate and replication
factor, we collect mean and 99th percentile across 50000
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Fig. 10: Improvement
using optimal factor r∗.
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Fig. 11: Prediction errors us-
ing different fitting methods.

requests resulting in over 100 hours of experiment time.
For each arrival rate and replication factor, we parame-
terize the model from the trace using a CHE distribution
with 10 phases and 2 branches. Figure 8 summarizes the
relative percentage error between the analytical results
and the measurements, focusing on the response time
mean and 99th percentile. Here we omit the results for
λ=30 and 40 as they do not benefit from replication. The
errors for these two cases are 11.5% and 9.9% for the
mean, and 1.2% and 0.1% for the 99th percentile, when
r=2 for λ=30 and 40, respectively. Our model slightly
underestimates the mean response time, although the
errors are all below 20%. In contrast, we observe that our
model performs very well on the 99th percentile, with
most errors under 5%. We note that such fitting results
are remarkable given the complexity of the application
considered.

A key requirement for a system that implements repli-
cation is to determine the optimal replication factor r∗.
Figure 9(a) and (b) show the empirical and analytical
replication factors that minimize the mean and the 99th

percentile, respectively. We find that in certain cases the
testbed offers very similar response times under two
replication factors. In these cases we allow multiple opti-
mal replication factors if the response times differ by less
than 5%. For instance, for an arrival rate of 5, the mean
response time for r=2 and 3 is 62.93 and 63.76 msec,
respectively, a difference of just 1.32%, thus we consider
both replication factors as optimal. From Figure 9(a) and
(b) we observe that our model identifies the optimal
replication factor in all cases considered. As expected,
the optimal replication factor decreases with increasing
arrival rate, owing to the extra loads introduced by
replication. A key observation here is that the optimal
replication factors for the 99th percentile are lower than
those for the mean. This confirms our observations in
Section 5 and highlights the importance of considering
the targeted percentiles when choosing the replication
factor.

When the optimal number of replicas is adopted, Fig-
ure 10 depicts the improvement in the mean and the 99th

percentile against the set-up without replication. Clearly,
replication improves the response times significantly, and
has a stronger impact on the tail than on the mean. For
instance, when the arrival rate is 5, the improvement is
21.57% on the mean and 70.05% on the 99th percentile.
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Fig. 12: Prediction errors using λ = 5.

Moreover, for both the mean and the 99th percentile, the
improvement is much stronger for low arrival rates as it
is more likely for several replicas to execute in parallel,
thus the system benefits from selecting the replica that
completes first. Instead, under high loads, the extra load
introduced by replication leads to longer queueing times,
diminishing the benefit.

We now evaluate the introduction of correlation
among the replicas’ processing times and compare the
predictions obtained from three different fitting methods:
a moment-matching method [20], an EM method for in-
dependent PH distributions [24], and the EM method for
CHE distributions introduced in Section 7. We consider
the case with arrival rate 6.67 and replication factor r=2.
Figure 11 shows the prediction errors on the response
time percentiles, {10, . . . , 90, 95, 99, 99.9}, compared
with the testbed measures. Clearly, the CHE distribution
achieves the lowest errors, especially at the tail, where
the error on the 99.9th percentile is as low as 0.55%. The
independent PH distribution performs well up to the
95th percentile, but fails to capture the tail, which is a
key performance metric. The moment-matching method,
in contrast, behaves erratically, with a large error on the
tail. Further, we compare the ability of the CHE and
PH models to capture the 99.9th percentile under dif-
ferent replication factors. With r=2, the 99.9th percentile
predicted with the CHE model is 0.3452, very close to
the measurement of 0.3471, while the PH model predicts
0.1291. This difference however diminishes as the repli-
cation factor increases, since more replicas benefit more
from the resource diversity, weakening the pair-wise
correlation. Thus, increasing r to 3, the measured 99.9th

percentile is 0.1707, very close to the 0.1667 predicted by
the CHE model, while the PH model estimates 0.1415.
In terms of optimal replication factor, the CHE model
predicts 3 replicas – in agreement with the measurement,
whereas the PH model chooses 2 replicas. Again, this
observation highlights the advantage of considering the
correlation explicitly by fitting the processing times using
the CHE model.

Finally, we show that our model can be used to predict
the response times under different loads and replica-
tion factors. Note that the characteristics of the replica

processing-time distribution, in particular, its variability
and correlation, differ under different replication factors.
Thus, to predict the response times for a given replication
factor r, we first fit the replica processing time from a
historical trace with the same r, under any load. We then
use the fitted distribution to predict the response times
for different arrival rates and the same r. As an example,
we fit the replica processing times observed for the case
with λ=5 and r=2, and use them to predict the response
times for cases with arrival rates of 3.33, 6.67, 10, and 20,
all with r=2. Figure 12 shows the errors obtained for the
mean and 99th percentile, considering replication factors
r=2, 3 and 4. We observe a good prediction performance
for all arrival rates, with an average error of 12.61% for
the mean and 4.89% for the 99th percentile.

All in all, our analysis can guide the choice of op-
timal replicas for any response time percentile and a
wide range of load scenarios, including different arrival
patterns and highly varying and dependent processing
times.

9 CONCLUDING REMARKS
The results in the previous sections show that the mod-
els proposed in this paper are able to capture the ef-
fect of replication without canceling on the response-
time distribution, accurately estimating the significant
impact of the processing-time distribution and the ar-
rival process, particularly pertaining to their variability
and auto-correlation. The remarkable accuracy on pre-
dicting response-time distributions at a wide range of
load scenarios enables us to derive insights on adopting
replication. In particular, we observe that the impact of
replication is not homogeneous across the response-time
percentiles and that the threshold load, i.e., the maxi-
mum load under which replication offers latency gains,
can differ if the evaluation is based on the response-time
mean or on a specific percentile. Also, the introduction
of the CHE service model enables us to incorporate
the observed correlation among the processing times of
replicas of the same request. Further, the model results,
extensively validated on a three-tier web application
(MediaWiki) and a MATLAB benchmark, is effective in
identifying the optimal replication factors for different la-
tency metrics, i.e., mean vs. tail percentiles, highlighting
the importance of analyzing response-time distribution
when designing replication policies.

A limitation of the method lies in that it operates on
matrices that can grow very fast in size with the number
of servers, especially if the processing-time distribution
has many phases. While we have devised efficient meth-
ods to obtain the response-time metrics, future work
will look into alternative approaches to tackle large-scale
systems that adopt replication.
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TABLE 4: Transition rates for S(all)-(not-all) and Snot-all-busy

Matrix From To Rate
S(all)-(not-all) (n, 0) n− ei niS

∗
R (i)

Snot-all-busy
n n− ei + ej niSR(i, j)
n n− ei niS

∗
R (i)

APPENDIX A
INDEPENDENT PROCESSING TIMES
A.1 Computing π(0)

To find the vector π(0) in Eq. (1), which is the stationary
distribution of the phase at the beginning of an all-busy
period, we construct a Markov chain by observing the
system state every time a new all-busy period starts.
To this end we need to connect the not-all-busy with
the all-busy periods and follow the evolution of the
system during the not-all-busy periods. We thus define
the process Dnot-all-busy(t) = (n1(t), . . . , nmR

(t)), which
keeps track of the number of replicas in service in each
phase during the not-all-busy period and takes values
in the set Nnot-all-busy = {(n1, . . . , nmR

)|ni ∈ {0, . . . , C −
1},
∑mR

i=1 ni ≤ C − 1}, which is of size mnot-all-busy.
To connect the all-busy period with the not-all-busy

period, we introduce the matrix S(all)-(not-all), which holds
the service transition rates (between arrivals) that trigger
the initiation of a not-all-busy period. This matrix thus
connects the set Nall-busy with the set Nnot-all-busy, has size
mall-busy×mnot-all-busy, and transition rates as described in
the first row of Table 4. Note that a transition can initiate
a not-all-busy period from a state with zero replicas of
the youngest job waiting in the queue, such that a service
completion of any replica in service phase i, before an
arrival, terminates the all-busy period. Next, we focus on
the not-all-busy period and introduce the matrix Snot-all-busy,
which holds the service transition rates between arrivals
during the not-all-busy period, as summarized in Table 4.
Here the second row considers phase transitions without
service completions, whereas the third row covers service
completions. Also, we adjust the diagonal entries of
Snot-all-busy to make it a Markov chain generator.

To track service phase changes due to arrivals dur-
ing the not-all-busy period, we let Rnot-all-busy be an
mnot-all-busy×mnot-all-busy matrix, the (i, j)th entry of which
holds the probability that the service phase just after an
arrival is j given that it was i just before. To define this
matrix, we introduce the quantity p(nw), which is the
probability that a job starts with w replicas and in phase
nw = (nw1 , . . . , n

w
mR

), where nwi is the number of replicas
that start in phase i, and such that

∑mR

i=1 n
w
i = w. As

each replica selects its initial phase independently, this
probability follows a multi-nomial distribution, thus

p(nw) = w!

mR∏
i=1

sR(i)
nw
i

nwi !
, (12)

where sR(i) is the probability that a replica start service
in phase i. We can therefore define Rnot-all-busy as in

Table 3, where the arriving job sees more than r idle
servers and starts service with all its r replicas, with
service phases as described by the vector nr. For clarity
we make use of the 1-norm ||n|| =

∑mR

i=1 ni, which is the
total number of replicas in service. This table also defines
a similar matrix Rall-busy, of size mnot-all-busy × mall-busy,
which covers the case in which an arrival sees at most r
idle servers, triggering the start of an all-busy period. As
shown in Table 3, in this case the arriving job becomes
the youngest in service and starts with w ≤ r replicas in
service, leaving the remaining r−w waiting in the queue.

We can now find π(0) as the solution to the equation

π(0) = π(0)

∫ ∞
0

exp(Tu)S∗(u)Q−1not-all-busy(Rall-busy ⊗D1)du.

(13)
This equation considers that the age during the all-busy
period is u and that a transition triggers the beginning of
the not-all-busy period. This occurs according to matrix
S∗(u) = S(all)-(not-all) ⊗ exp(D0u), which captures that
the next arrival occurs after u time units, such that
a service completion triggers the end of the all-busy
period. Once the system is in the not-all-busy period,
it evolves according to

Qnot-all-busy = Imnot-all-busy ⊗D0 + Snot-all-busy ⊗ Ima

+Rnot-all-busy ⊗D1,
(14)

which considers transitions of the arrival process without
arrivals, service completions, and arrivals that do not
trigger the start of an all-busy-period. Eventually, an
arrival causes the process to be absorbed into an all-busy
period according to Rall-busy ⊗D1.

To compute the integral in Eq. (13), we define

P =

∫ ∞
0

exp(Tu)S∗(u)du, (15)

and integrate P by parts to obtain

TP + P (Imnot-all-busy ⊗D0) = −S(all)-(not-all) ⊗ Ima
.

Because T is known, this is a Sylvester matrix equa-
tion that can be solved in O(m3

am
2
all-busymnot-all-busy)

time to find P . As a result, after finding P , deter-
mining π(0) reduces to solving a linear system with
matrix PQ−1not-all-busy(Rall-busy ⊗ D1), which can be done
in O(m3

a(m3
all-busy + m3

not-all-busy + m2
not-all-busymall-busy +

m2
all-busymnot-all-busy)) time.
Finally, we recall [30, Theorem 2.3], from which the

process {X(t), J(t)|t ≥ 0} is positive recurrent if

% = ρ

∫ ∞
0

uA
(jump)
MAP (u)du1 > 1, (16)

where ρ is the invariant probability vector of the matrix
SMAP +(A(jump)⊗D−10 D1). This condition guarantees [30]
the existence of π(x) and its matrix-exponential form.
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TABLE 5: Transition rates for S and A(jump) - CHE
services

Matrix Condition From To Rate

S
w≥0 (n, w, b) (n−ei+ej , w, b) niSR(i, j)
w≥1 (n, w, b) (n−ei+eb, w−1, b) niS

∗
R (i)

A(jump) w=0 (n, 0, b) (n−ei+ej , r−1, j) niS
∗
R (i)sR(j)

TABLE 6: Transition rates for S(all)-(not-all) - CHE services

From To Rate
(n, 0, b) (n− ei) niS

∗
R (i)

A.2 The PH representation
Having found π(0) and T , and relying on [17], we
can obtain the PH representation of the waiting-time
distribution, as this coincides with the distribution of the
age X(t) just after a downward jump, because that is the
age of the job starting service, and thus its waiting time.
Let the steady-state distribution of the phase J(t) dur-
ing the all-busy period be αbusy=−π(0)T−1, and define
ϕ=(T−SMAP)1. The PH representation of the waiting-
time distribution is thus [17]

swait = γαbusy ◦ϕ/((αbusy ◦ϕ)1), Swait = Λ−1T ′Λ, (17)

where ◦ stands for the Hadamard product, ′ denotes the
matrix transpose, Λ is a diagonal matrix such that Λ1 =
α′busy, and γ is the probability that a job has to wait.

To obtain γ, we first define η0 to be the number of ser-
vice completions in an all-busy period and η1 the number
of arrivals in a not-all-busy period. Their expected values
E[η0] and E[η1] can be obtained following a similar
approach as in [17, Section 7.2]. Thus the probability that
a job has to wait is

γ = (E[η0]− 1)/(E[η0]− 1 + E[η1]) (18)

because, in a cycle consisting of one all-busy and one
not-all-busy period, E[η0]− 1 is the expected number of
jobs that have to wait and E[η0]−1+E[η1] is the expected
number of job arrivals.

APPENDIX B
CORRELATED PROCESSING TIMES
In this appendix we extend the model of Section 3
to incorporate the CHE processing times introduced in
Section 6.

B.1 The waiting-time distribution
As the replicas of a single job follow a CHE distri-
bution, we let the total number of phases in the PH
representation be mR =

∑B
i=1 hi. Next, we redefine the

service process during the all-busy periods Dall-busy(t) as
(n1(t), . . . , nmR

(t), w(t), b(t)), where ni(t) is the number
of replicas in service phase i, for 1 ≤ i ≤ mR, w(t)
is the number of replicas of the youngest job waiting
in the queue, and b(t) is the service branch selected

by the youngest job in service at time t. This process
takes values in the set Nall-busy={(n1, . . . , nmR

, w, b)|ni ∈
{0, . . . , C},

∑mR

i=1 ni=C, 0≤w<r, b ∈ B}.
To describe the evolution of this process, we re-define

the matrices S and A(jump) as summarized in Table 5.
The key difference here is that whenever a new job starts
service, with rates recorded in matrix A(jump), it chooses
a branch j with probability sR(j), and this choice is
recorded in the last entry of the state descriptor. Thus,
when other replicas of the same job start service, with
rates in matrix S, they choose the same branch. With
these matrices, we can solve Eq. (2) to determine the
matrix T of the age process.

To determine π(0), we again need to consider the
evolution of the system during the not-all-busy period.
However, during the not-all-busy periods there is no
need to keep track of the branch selected by the youngest
job in service as this information is only needed when
this job has replicas waiting in the queue. We can there-
fore rely on the service process Dnot-all-busy(t) as defined
in Appendix A and on the Snot-all-busy matrix in Table 4
to describe the phase process evolution due to service
completions. Also, a transition that initiates a not-all-
busy period ignores the branch selected by the youngest
job in service, as captured by the matrix S(all)-(not-all) in
Table 6, as this information becomes irrelevant once all
replicas of the youngest job have started service. In
the case of arrivals, the matrix Rnot-all-busy, shown in
Table 7, requires a modification to ensure that all replicas
of a new job start service in the same phase i with
probability sR(i). When a job arrives during a not-all-
busy period and finds w ≤ r idle servers, it initiates
an all-busy period, with all its first w replicas starting
service in phase i with probability sR(i), as recorded in
matrix Rall-busy in Table 7. Here we also keep the selected
branch in the last entry of the state descriptor so that the
remaining r − w replicas of the new job select the same
branch when they start service. With these matrices, we
can proceed as in Appendix A to obtain the waiting-time
distribution.

B.2 The service-time distribution
The service-time process requires a similar adaptation to
keep track of the service branch selected by the tagged
job when some of its replicas are waiting. We thus
define the service process Dser(t) as (n1(t), . . . , nmR

(t))
when

∑mR

i=1 ni(t)=r (all tagged replicas in service), and
as {(o1(t), . . . , omR

(t)), (n1(t), . . . , nmR
(t), b(t))} when∑mR

i=1 ni(t)<r (at least one tagged replica in the queue).
Note that the only difference with the service process in
the independent case is that we keep track of the branch
b(t) selected by the tagged job when at least one tagged
replica is in the queue. As this process is very similar to
that in the fully-independent case, Table 8 summarizes
the main differences in Sser with respect to the one in
Table 2. In this case, when at least one tagged replica is in
the queue and a non-tagged replica completes service, a
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TABLE 7: Transition probabilities for Rnot-all-busy, Rall-busy, and Rser - CHE services

Matrix From To Probability Condition
Rnot-all-busy n n + rei sR(i) ||n||+r < C
Rall-busy n (n + wei, r−w, i) sR(i) ||n||+r ≥ C,w=||n||+r−C
Rser n (n, wei, i) sR(i) ||n||+r ≥ C,w=||n||+r−C

TABLE 8: Transition rates for Sser - CHE services. Main
differences to Table 2

From To Rate Condition
(o,n, b) (o− ei,n+eb, b) oiS

∗
R (i) ||n|| ≤ r − 2

tagged replica starts service in the same phase b selected
by all its siblings.

As in Section 3.2, to determine the stationary probabil-
ity vector sser according to which a job starts service in
each service phase, we consider three different scenarios
and obtain this vector as in Eq. (9). The key differences
are:

Busy start In this case, a job starts service with its first
replica, which selects its initial service phase according
to sR, just as in the fully independent case, thus a job
starts service according to Eq. (3).

Full start When a job finds more than r idle servers,
it starts service with all its replicas without initiating
an all-busy period. The main difference here is that the
replicas select the same phase. Thus, a job selects phase
rei with probability sR(i). We therefore define a vector ŝr
of size |N all

ser|, with entries ŝr(nr) = sR(i), when nr = rei,
and zero otherwise. We then find sall

not-busy, the initial
probability distribution of the service phase in this case,
by replacing sr with ŝr in Eq. (6).

Partial start Finally, if a job finds 1 ≤ w ≤ r servers
idle, it starts service with its first w replicas, and initi-
ates an all-busy period. The difference with the fully-
independent case is that all w replicas select the same
phase. We can thus find the distribution of the initial
service phase spart

not-busy as in Eq. (8), but adjust the matrix
Rser. Table 7 shows this modification, where all w replicas
start service in phase i with probability sR(i), and the
selected phase is recorded in the state descriptor to be
used when the remaining replicas of the same job start
service.

APPENDIX C
EM ESTIMATION FOR CHE TIMES
The key to the EM algorithm is to consider the dataset
D as incomplete data, where the branch zd selected in
sample d is missing. If this information, summarized in
the vector z of size D, was known we could write the
log-likelihood of the parameter set Θ as

logL(Θ|D, z) =

D∑
d=1

log (αzdpzd(xd|λzd)) ,

where pb(xd|λb) is the likelihood of observing the re-
sponse times xd when branch b is selected and has rate

λb. Given the CHE service model, this quantity is

pb(xd|λb) =
(λr

b

∏r
j=1 x

j
d)

hb−1

((hb−1)!)r λrb exp

{
−λb

r∑
j=1

xjd

}
, (19)

because, given that branch b has been selected for sample
d, the processing times of the r replicas follow indepen-
dent Erlang distributions with parameters (hb, λb). Note
that the log-likelihood without considering z is given by

logL(Θ|D) =

D∑
d=1

log

(
B∑
b=1

αbpb(xd|λb)

)
, (20)

which considers all possible branches that could be
selected in each sample.

As the vector z is in fact a realization of a random
variable Z, the next step is to assume that a guess
Θ̂ of the parameters is known. With this, we can de-
termine the expected value of the log-likelihood with
respect to the random variable Z given the observations
D and the guessed parameters Θ̂, which we write as
Q(Θ, Θ̂)=EZ

[
logL(Θ|D, z)|D, Θ̂

]
. Since Z lives in the

space ζ=(1, . . . , B)D, we can write this expected value
as

Q(Θ, Θ̂) =
∑
z∈ζ

D∑
d=1

log (αzdpzd(xd|λzd))

D∏
i=1

δ(zi|xi, Θ̂),

where the first term in the sum is the likelihood of
observing the processing time trace (x1, . . . ,xD) given
that the branches selected were z, and the second term
holds the probability that branches were selected as in
z. If we consider each possible branch selected in each
sample, we can re-write this expression as

Q(Θ, Θ̂) =

D∑
d=1

B∑
b=1

log (αbpb(xd|λb)) δ(b|xd, Θ̂).

A detailed derivation of this expected value for the
hyper-Erlang case can be found in [24, Appendix A.2].
In fact, we rely on [24] to find δ(b|xn, Θ̂) by means of
Bayes’ rule as

δ(b|xd, Θ̂) =
δ(b|Θ̂)p(xd|b, Θ̂)

p(xd|Θ̂)
=

α̂bpb(xd|λ̂b)∑B
j=1 α̂jpj(xd|λ̂j)

,

(21)

which gives us the likelihood of choosing branch b for
sample d as a ratio that compares it with all branches that
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could be selected. Computing these quantities constitutes
the expectation step of the EM method.

For the maximization step we find the values of Θ
that maximize Q(Θ, Θ̂). As the CHE service model is a
mixture of densities, it has been shown in [27] that we
can obtain αb as in Eq. (11). To obtain λb we derivate
Q(Θ, Θ̂) with respect to λb,

∂Q

∂λb
=

D∑
d=1

δ(b|xd, Θ̂)

∂

∂λb
log


(
λrb
∏r
j=1 x

j
d

)hb−1

((hb − 1)!)r
λrb exp

−λb
r∑
j=1

xjd




and equate to zero to obtain Eq. (11).

APPENDIX D
EFFICIENT COMPUTATION
To determine the matrix T we extend the methods
in [19]. First, we note that (2) can be written as
T=SMAP+L(A(jump)⊗D1), with L as in (4). Also, integrat-
ing L by parts we find

TL+ L(Ims
⊗D0) = −Im. (22)

We thus apply the following iterative scheme [30]:
(i) start with T0=SMAP; (ii) solve (22), replacing T
with T0, to find L0; (iii) obtain a new iterate as

T1=SMAP+L0(A(jump) ⊗ D1), and repeat. The key step
here is the solution of (22), which is normally per-
formed in O(m3) time with the standard Hessenberg-
Schur method [31]. We propose a more efficient method
relying on the following two observations.

(i) The matrix A(jump) is of low rank, thus (A(jump) ⊗
Ima

) is also of low rank, i.e., rank(A(jump)⊗Ima
)=f � m.

Thus letting (A(jump)⊗Ima) = ΓΦ we can re-write (22) as

TY + Y (Ims
⊗D0) = −Γ, (23)

with Y = LΓ, where Y has only f columns.
(ii) If we order the service phase space descendingly by

w and then lexicographically by the other entries, from
Table 1 we see that the matrix S is upper triangular. From
the low-rank observation above we have that Tn+1 = S⊗
Ima

+YnΦ(Ims
⊗D1), thus Tn+1 is a low-rank correction

of the upper-triangular matrix S ⊗ Ima
.

As a result, in each iteration we solve (23) in lieu
of (22), and instead of applying the standard Hessenberg
decomposition [31] to T , which takes O(m3) time, we
solve a low-rank system in O(f3) and find each column
of Yn by solving an upper-triangular system in O(m2).
Each step in the computation of T is thus reduced from
O(m3) to O(f3 + fm2). The key difference with [19] lies
in that the matrix A(jump) in [19] is assumed to have
a few nonzero columns, whereas here we consider the
more general case where this matrix is of low rank. These
observations lead to similar gains when computing π(0)
and the percentiles of the response-time distribution.
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