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Abstract—Wimpy virtual instances equipped with small num-
bers of cores and RAM are popular public and private cloud
offerings because of their low cost for hosting applications. The
challenge is how to run latency-sensitive applications using such
instances, which trade off performance for cost. In this study, we
analytically and experimentally show that simultaneously scaling
resources at coarse granularity and workloads, i.e., submitting
multiple query clones to different servers, at fine granularity can
overcome the performance disadvantages of wimpy VM instances
and achieve stringent latency targets that are even lower than
the average execution times of wimpy servers. To such an end,
we first derive a closed-form analysis for the latency under any
given VM provisioning and query replication level, considering
cloning policies that can (not) terminate outstanding clones with
(without) an overhead. Validated on trace-driven simulations, our
analysis is able to accurately predict the latency and efficiently
search for the optimal number of VMs and clones. Secondly,
we develop a dual elastic scaler, DuoScale, that dynamically
scales VMs and clones according to the workload dynamics
so as to achieve the target latency in a cost-effective manner.
The effectiveness of DuoScale lies on the observation that the
application performance only scales sub-linearly with increasing
vertical or horizontal resource provisioning, i.e., resources per
VM or number of VMs. We evaluate DuoScale against VM-only
scaling strategies via extensive trace-driven simulations as well as
experimental results on a cloud test-bed. Our results show that
DuoScale is able to achieve the stringent target latency by using
clones on wimpy VMs with cost savings up to 50%, compared to
scaling brawny VMs that have better performance at a higher
unit cost.

I. INTRODUCTION

Resource elasticity is a central operation in the cloud com-
puting paradigm, as scaling the number of provisioned VMs
ensures application performance in a cost-effective manner
under all load conditions. The cost of renting VM instances in
the cloud becomes ever lower, in many cases at the expense
of conditional capacity guarantees, e.g., the Amazon micro
instances [1], or resource oversubscriptions, e.g., enterprise
cloud instances [2]. The application performance is often
observed to scale sublinearly with the number of cores per
VM and the number of VMs due to the limited parallelism of
applications and other resource bottlenecks, e.g., network. It is
of paramount (economical) interest to answer the question of
how to make use of inexpensive VMs to host latency-sensitive
applications, e.g., web search, the user experience of which
can easily be impaired by high latency.

With the aim to get more capacity out of meager instances,
opportunistic strategies [3, 1, 4, 5] have been developed to
sniff the performance heterogeneity of theoretically identical

instances, i.e., the root causes and the patterns of time-varying
capacities. On the one hand, one can try to select VMs that
outperform others in conjunction with VM scaling [3, 5];
however, due to the overhead of starting up new VMs and
the constraint of billing periods, such actuation is restricted
to a macro granularity, e.g., one hour, and may miss the
opportunity to capture finer-scale capacity variations. On the
other hand, one can perform heterogeneity-aware optimization
strategies at a micro time scale, such as load balancing [4]
and CPU throttling [1], relying on detailed profiling of the
application on each deployed VM.

Another recent strategy to minimize latency is query
cloning, which has been shown to be effective in the context of
web services [6] and big data processing platforms [7] where
the capacity variability is high, yet without requiring intrusive
probing of the VMs’ states. Upon the arrival of a query,
multiple clones are spawned on different servers, and the
results are returned immediately after the first clone completes.
The effectiveness of cloning depends on the overhead caused
by processing additional clones and the possibility of canceling
remaining unfinished clones. When the outstanding clones can
be canceled immediately after the first clone completes, one
can use a larger number of clones to further reduce the latency.
In a cloud setting, query cloning opens up new doors in terms
of cost effectiveness: is it cheaper to purchase a large number
of wimpy VMs and replicate requests to achieve the latency
target, or a small number of brawny VMs?

In this paper, we address the challenging question of how to
best host latency sensitive applications with dynamic workload
patterns and dominated by read only workload, using inexpen-
sive wimpy VMs in the cloud. We advocate to simultaneously
scale VM provisioning on the macro scale and query cloning
on the micro scale, where the former handles time-varying
load, and the latter tackles the transient capacity variability
without intrusive profiling. We argue that it is often more
economical to allocate a large number of wimpy instances and
leverage the power of query redundancy, especially when the
marginal cost of additional capacity is high. In other words,
the sweet spot for simultaneously scaling wimpy VMs and
queries is when doubling resource provisioning, in terms of
cores per VM or number of VMs, does not improve the latency
by a factor of two, whereas still bearing twice the cost. To
exploit such conditions, we develop a set of analytical models
and a dual elasticity controller, DuoScale, and conduct ex-
tensive evaluations on trace-driven simulations whose arrivals



and processing times are based on measurements from real
applications in the cloud. We aim to answer the following
specific questions:

• Is there a performance gain in scaling VM provisioning
and query clones simultaneously? And if so, what are the
optimal levels to meet a given latency target?

• Is it more economical to use dual scaling on small cheap
instances or resource scaling on big instances?

• How to sustain a stringent latency target by scaling both
resources and workloads, when encountering dynamic
workloads?

We first derive analytical models that incorporate two clone
canceling policies: (i) early canceling of remaining unfinished
clones with some overhead and (ii) leaving the clones to
complete without canceling. Using the derived closed-form
expressions for the average latency, we can efficiently explore
the design space of different arrival patterns, VM types, num-
ber of instances, and query replication levels, so as to achieve
the target latency at a minimum cost. Secondly, we develop
a model-driven elasticity controller, DuoScale, which dynam-
ically determines the number of VMs at macro timescales,
e.g., one hour windows, and tunes the replication levels at
micro timescales, e.g., 5 minute windows. Extensive evaluation
results from trace-driven simulations and a deployment of the
MediaWiki application in the cloud show that scaling both
VMs and queries simultaneously not only achieves the target
latency effectively, but also makes wimpy instances perform
better by exploiting their performance variability.

Our contributions are the following: (i) a novel and cost-
effective dual scaling strategy that is particularly suitable to
meet stringent latency targets using wimpy VM instances; (ii)
a set of closed-form results to approximate the latency for any
given VM provisioning and workload redundancy level under
different clone canceling policies; (iii) extensive evaluations
on trace-driven simulations and an application deployment.

II. MOTIVATION

The most common question when hosting services in the
public or private cloud is how many VMs of which type are
needed. The two key factors affecting this decision are the
deployment cost, which is to be kept at a minimum, and the
latency delivered, which must meet a certain quality target.

To demonstrate the complexities and challenges in achieving
the target latency by resource scaling, we deploy the Media-
Wiki application in our private cloud. The query target latency
set to 120 milliseconds. To serve a load of 10 requests per
second, we use two types of VMs, namely wimpy and brawny,
which consist of 2 and 4 virtual cores, with 2 and 4 GB
RAM, respectively. We progressively increase the number of
instances and measure the average latency. Fig. 1 summarizes
the results for both instance types. The best latency by scaling
wimpy instances is around 138 ms, whereas scaling brawny
instances results in an average latency as low as 120 seconds.
One may thus conclude that using a sufficient number of
brawny instances, i.e., 5, one can achieve the target latency
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Fig. 1: The average latency of hosting MediaWiki in cloud
under three scaling strategies: (i) adjusting wimpy VMs only,
(ii) adjusting brawny VMs only, and (iii) adjusting wimpy
VMs and cloning requests by a factor of two.

of 120 ms, whereas even a high number of wimpy instances
fails to achieve such a target.

Inspired by the recent proposal of query replication for
latency curtailment, we duplicate every query upon its arrival
and dispatch the original and cloned query to different servers.
We return the queries to users as soon as the first clone
returns and leave the other clone to continue and complete
its execution. The detailed implementation is described in
Section VI. As shown in Fig 1, a query replication factor of
two, i.e., the original query plus a clone, on a sufficiently
large number of wimpy instances, i.e., 5 VMs, can achieve
an average latency as low as 115 ms, which is lower than
the target and better than the best performance achieved
with brawny instances. We also note that when the number
of wimpy instances is low, 2 instances or less, replicating
queries results in a latency worse than the wimpy instances
without query replication. This is due to the extra processing
overhead of replicated queries, and indicates that enabling
query replication without sufficient resources can result in
more harm than performance advantages.

Overall, to achieve the latency target of 120 ms at the load
of 10 requests per second there are two alternatives: (i) use
five brawny instances, or (ii) use five wimpy instances with a
query replication factor of two. The cost associated with those
alternatives is the next important criteria to consider. Since
according to standard pricing conventions stronger instances
are more expensive, it is definitely cheaper to rent five wimpy
instances than five brawny instances.

The key message derived from this example is that scaling
both resources and workload simultaneously can maintain a
stringent latency target in a cost-effective fashion, compared
to a solution consisting solely of resource scaling, especially
when there exists capacity variability across VM instances.
Also, the enabling condition behind this observation is that
vertical or horizontal resource scaling, i.e., number of cores per
VM or number of VMs, often provides sublinear performance
improvement. The immediate challenge in addressing double
elasticity is how to determine the optimal resource provision-
ing and query replication according to the arriving workloads
and the latency target. This entails explicitly considering the
overheads of resource provisioning and cloning, as well as the



Fig. 2: Schematics of systems capable of dual scaling VMs
and query clones. Queries with time-varying arrival patterns
are first cloned and then sent to be executed by a pool of VMs.

multiple VM types, and their price and performance charac-
teristics, so as to achieve the most cost-effective solution.

III. DUAL ELASTICITY ON VMS AND QUERIES

This section formally introduces the key aspects to consider
in the light of dual scaling. We examine a service provider
that utilizes public or private cloud resources to deploy an
interactive service, with a particular focus on read-only work-
loads. The provider is thus concerned with the cost incurred
in running this service, as well as with the quality of service
experienced by the service users. The latter is reflected in a
target R̄ for the average latency.

A key feature of this system is that it is subject to a time-
varying demand pattern, i.e., the arrival rate of queries λ(t)
varies with time t. At any given time t, the system consists
of C(t) VMs, each with service rate of µ queries per second.
As we focus on read-only workloads for interactive services,
we further assume that all VMs are homogeneous and capable
of executing all queries. Queries arrive at a central queue,
where they can be cloned before being dispatched to the next
available server1, as shown in Fig. 2. The central queue also
takes care of returning the response to the client once the
first clone completes, and initiates the canceling of outstanding
clones if such a policy is in place.

To maintain the latency target, the system is able to scale
(i) the number of provisioned VMs, C(t), and (ii) the number
of clones, or query replication level, r(t), according to the
(estimated) arrival rates. We explain the design considerations
regarding these two control variables in the following. For
simplicity we drop the index t unless it is explicitly required.

On-demand VM Provisioning. In theory, VMs in the cloud
can be provisioned and decommissioned according to the rise
and fall of arrival rates; however, the typical practice is to
avoid frequent VM scalings due to several practical concerns.
On the one hand, scaling up the number of VMs entails de-
lays [8] caused by VM image retrieval, OS booting, application
installation, and cross configuration with other servers. On the
other hand, even if VMs can be decommissioned with little or
no overhead delay, terminating VMs before the end of their

1We follow the convention of referring to the original request as query and
to the requests executed at the server as clones.

Fig. 3: An example of applying two different clone canceling
policies on queries with replication level r = 3. Clone two
C2 of the first query is the fastest and clone one C1 and three
C3 either are terminated or continue, subject to the canceling
policy.

billing period, which is typically in the order of one hour,
leads to the waste of already paid resources. As a result, VM
scaling tends to be actuated at a coarse granularity to amortize
the overhead of start-up delay and avoid the financial waste
stemming from the early termination of VMs.

Query Replication. Cloning queries has been proposed as
a solution to mitigate slow execution, either reactively after
experiencing long delays, or proactively upon the arrival of
queries [7]. All clones are sent to different VMs so as to best
take advantage of the variability across VMs, i.e., to increase
the probability of a clone being executed on a “fast” VM. For
each query, as soon as one of its clones completes, the result is
returned to the user. Here, we particularly focus on proactive
query replication, i.e., every query is replicated upon arrival.

To deal with the additional load introduced by proactive
cloning, a canceling mechanism can be introduced to drop the
outstanding clones after the completion of the first one. As
illustrated in Fig. 3, there are two main canceling policies: (i)
overhead cancel, where outstanding clones can be removed
with a certain delay overhead, as in Fig. 3(a), where new
queries at VM 1 and 3 can start only after the canceling
overhead delay marked as dashed blue rectangles; and (ii)
no cancel, where outstanding clones continue their execution
uninterrupted, as in Fig. 3(b). Canceling without overhead
would clearly be preferable, but some canceling overhead is
unavoidable in practice and might even be large enough to
make no-canceling a better option. All in all, the optimal
replication level depends not only on the current load and
capacity, but also on the overhead of cloning and canceling
queries.

IV. MODELS AND ANALYSIS

In this section, we analytically derive the average query
latency given the number of VMs C and clones r, under the
two clone canceling policies described in the previous section.
In contrast to standard queueing systems, the introduction of
clones modifies the arrival process, as all clones of a query
arrive as a single batch. More importantly, the service process



and waiting times are affected by the canceling policy, as
depicted in Fig. 3. Consequently, one needs to derive the query
service time, even if the clone service times follow known
statistical distributions, before obtaining the query response
time. In the following we provide approximations for both
overhead cancel and no cancel policies. We assume Poisson
query arrivals with rate λ and exponential clone service times
with mean 1/µ. Also, the number of clones r is at most equal
to the number of VMs C as more clones would be redundant.

To derive the average query response time under the
overhead cancel and no cancel policies, we first derive the
stationary distribution of the number of queries in the system
(π), the mean query waiting time (Wq), and the mean query
service time (S), and then compute the response time as the
sum of Wq and S.

A. Overhead cancel
In this section we propose an approximated method that

allows us to obtain closed form formulas for the mean response
time and further ease the integration of the model in the
DuoScale controller. Let us first consider the case of canceling
without overhead, where all outstanding clones of a query
are canceled as soon as the first clone completes service.
The key observation to analyze this setup is that at any time
there can be at most K queries in service, with K =

⌈
C
r

⌉
.

If at most K − 1 queries are present, they all execute with
all their clones. Instead, the K-th query, i.e., the youngest,
executes with only h = C mod r clones. This configuration
holds at all times due to the synchronization introduced by the
canceling mechanism, which removes all clones of a query
once it finishes, allowing r − h clones of the youngest query
to join service and a new query to start service with h clones.
In case the youngest query is the one that terminates, it frees
h service spots and allows a new query to start service with
h clones.

We now introduce the overhead as a fraction α of the
mean processing time, thus α/µ. We assume this overhead
is constant if there are at least two clones in service, or zero
if a single clone is in execution as canceling is not required
in this case. The mean processing time with j ≥ 2 clones
in service is thus 1/(jµ) + α/µ, where the first term is the
service time without overhead, given by the minimum of j
exponential random variables with mean 1/µ. The inverse of
this expression is the clone processing rate µ̂j with j clones
in service, which is equal to

µ̂j =

{
µ, j = 1,
jµ

1+jα , 2 ≤ j ≤ r.
(1)

With these definitions we obtain the long-run probability π̂j
that there are j queries in the system, in the following result.

Lemma 1. If h ≥ 2, the stationary distribution of the number
of queries in the system with overhead-cancel, {π̂j}j≥0, is

π̂j =


(
λ(1+rα)

rµ

)j
1
j!π0, 1 ≤ j ≤ K − 1,(

λ(1+rα)
rµ

)K−1
ρ̂j−K+1

(K−1)! π0, j ≥ K,
(2)

where π̂0 is given by

π̂0 =

1 +

K−1∑
j=1

(
λ(1 + rα)

rµ

)j
1

j!
+ (3)

(
λ(1 + rα)

rµ

)K−1
1

(K − 1)!

ρ̂

1− ρ̂

)−1

, (4)

and

ρ̂ =
λ(1 + rα)(1 + hα)

Cµ+Kαhrµ
. (5)

Proof. We setup a birth-and-death (BD) process [9] that counts
the number of queries (one query accounting for all its clones)
in the system. The state space is thus the set of natural
numbers, and the birth rates are equal to λ in every state,
marking the arrival of new queries. For the death rate γk in
state k ≥ 1 we use (1) and assume r ≥ 2 to obtain

γk =


krµ
1+rα , 1 ≤ k ≤ K − 1,
(K−1)rµ
1+rα + µ, k ≥ K,h = 1,

(K−1)rµ
1+rα + hµ

1+hα , k ≥ K,h ≥ 2.

(6)

In the first case up to K − 1 queries execute with all their r
clones. In the second and third cases the K-th query executes
with h clones only, and the canceling overhead is introduced if
h ≥ 2. We thus set up and solve the balance equations for the
BD process to obtain (2) and (4), where ρ̂ is the ratio between
the birth and death rates for all states k ≥ K, thus

ρ̂ =
λ

(K−1)rµ
1+rα + hµ

1+hα

,

from which we obtain (5).

Lemma 1 holds if the system is stable [9], i.e., if and only if
ρ̂ < 1. From Lemma 1 we obtain the mean query queue length
and applying Little’s Law we find the query mean waiting time
as follows.

Corollary 1. If h ≥ 2, the query mean waiting time is given
by

Ŵq = π̂K−1
ρ̂

(1− ρ̂)2
(1 + rα)(1 + hα)

Cµ+Kαhrµ
. (7)

The analysis above assumes that the query in front of the
queue can start service only after a query in service has
completed service and has canceled all its clones. However,
in Fig. 3 we see that one clone in the queue can start service
as soon as the first clone of the query in service completes,
and the remaining h − 1 clones join once the canceling step
has been performed. To compensate for this additional delay
in the waiting time, we allow all h clones to start service
simultaneously, skipping the period where a single clone
executes on its own. Thus, all clones start at the same time as
the first one, but they all have to wait until after the canceling
step is performed. With this approximation we obtain the query
mean service time in the following result.



Lemma 2. If h ≥ 2, the query mean service time is

S =
1

rµ

(
1 +

π̂K−1

1− ρ̂
(r − h)(1 + αr)

C +Kαhr

)
. (8)

Proof. We consider two cases: (i) the query starts service with
all its clones, with probability

∑K−2
j=0 πj due to the PASTA

property [10], and the mean service time is 1/rµ as the first of
the r clones to finish determines the completion time; (ii) the
query starts service with h clones with probability

∑
j≥K−1 πj

as it finds h idle servers with probability πK−1, or it joins the
queue with probability

∑
j≥K πj , eventually starting service

with h clones. If one of the first h clones completes service
before the clone of any other query in service, which from (6)
occurs with probability (hµ/(1 + hα))/γK , the mean service
time is 1/hµ. Instead, if the first clone to complete service is
from a different query, with probability 1−(hµ/(1+hα))/γK ,
the mean service time is 1/rµ due to the memoryless property
of the exponential distribution. Putting everything together we
obtain

S =
1

rµ

K−2∑
j=0

π̂j+

(
1

hµ

hµ
1+hα

γK
+

1

rµ

(
1−

hµ
1+hα

γK

)) ∑
j≥K−1

π̂j ,

where we replace (2) to obtain (8).

Adding the mean waiting time in (7) to the mean service
time in (8) we obtain the approximate query mean response
time R̂ = Ŵq + Ŝ in the system with canceling overhead.

The results for the case h = 1 can be obtained similarly,
and we summarize them in the following result.

Lemma 3. If h = 1, the stationary distribution of the number
of queries is as in Lemma 1, but the traffic coefficient is

ρ̂ =
λ(1 + rα)

µ(C + rα)
.

The mean waiting time is given by

Ŵq = π̂K−1
ρ̂

(1− ρ̂)2
1 + rα

µ(C + rα)
,

and the mean service time is given by

S =
1

rµ

(
1 +

π̂K−1

1− ρ̂
r − h+ αr(r − 1)

C + rα

)
.

B. No cancel

We now consider the policy where all clones execute until
completion without being canceled. This system is difficult
to analyze exactly as it requires keeping track of single
clones instead of queries. We thus opt for an approximate
analysis where clones are modeled separately but their arrival
in batches, caused by cloning, is captured through the impact
that these batch arrivals have on the variability of the arrival
process. This enables us to approximate the request mean
waiting time.

As we look at the level of clones, we model the system as
an M/M/C queue with arrival rate rλ. From the analysis of

the M/M/C, and defining ρ = rλ/Cµ, we readily obtain [9]
the stationary distribution of the number of clones {πj}j≥0 as

πj =

{
(Cρ)j

j! π0, 1 ≤ j ≤ C − 1,
CCρj

C! π0, j ≥ C,
(9)

where π0 is given by

π0 =

C−1∑
j=0

(Cρ)j

j!
+

(Cρ)C

C!

1

1− ρ

−1

.

This stationary distribution exists if the system is stable [9],
i.e., if and only if ρ < 1. Thus, introducing r clones without
canceling reduces the maximum sustainable arrival rate by a
factor r. The mean waiting time in this queue is given by

π0
(Cρ)C

C!

1

1− ρ
1

Cµ− rλ
.

However, since the clones arrive in batches we approximate
the query mean waiting time via the Allen-Cunneen approxi-
mation [11]

Wq = π0
(Cρ)C

C!

1

1− ρ
1

Cµ− rλ
r + 1

2
, (10)

where the numerator of the factor on the right is the sum of the
coefficients of variation (CV) of the clone inter-arrival times
(r) and the service times (1). The service time CV is one
because the clone service times are exponentially distributed.
Instead, the inter-arrival time CV is r times that of the query
inter-arrival times, which is one as queries arrive as a Poisson
process. This approximation is well-known [11] to capture the
impact of batch arrivals on mean waiting times. We now obtain
the query mean service time in the following result.

Lemma 4. The query mean service time in the system without
canceling is given by

S = g(r, r)

C−r∑
j=0

πj+

C−2∑
j=C−r+1

πjg(r, C−j)+g(r, 1)
∑

j≥C−1

πj ,

(11)
where g(i, r) is the mean request service time given that the
request starts service with i out of r clones, and is given by

g(r, i) =
i

C

1

iµ
+
C − i
C

g(i+ 1, r). (12)

Proof. First, to obtain (12) we consider two cases: either the
initial i clones finish service before any other clone in service,
with probability i/C, causing a mean service time of 1/iµ; or
any other clone in service finishes first, with probability (C−
i)/C, and the mean service time is given by g(i+ 1, r). Once
all the g(i, r) terms are known, we can obtain (11) by relying
on the PASTA property. Here we consider three cases: (i) the
request sees up to C − r clones in service and starts service
with all its clones, requiring mean service time g(r, r); (ii) the
request sees 2 ≤ j ≤ r − 1 idle servers, thus starting with j
clones initially in service and requiring a mean service time
g(r, j); (iii) the request finds either one or zero idle servers,



thus starting service with one clone and requiring mean service
time g(r, 1).

As before, we add the mean waiting time in (10) to the
mean service time in (11) to obtain the query mean response
time in the system without canceling.

C. Model Validation

Here we validate the derived analysis via trace-driven sim-
ulation, the details of which can be found in Section VI.
The aim is to see how such an approximate closed form
analysis can accurately capture the complex system dynamics
and latency. For both clone policies, we evaluate two particular
scenarios: (i) synthetic case: Poisson arrivals with an average
rate λ = 1 and exponentially distributed clone processing
times with an average rate of µ = 1; and (ii) empirical case:
empirical inter-arrival times with an average rate λ = 1.5
and empirical clone processing times with an average rate
µ = 1. We set a canceling overhead of 10%. The comparison
with the synthetic case is to demonstrate the accuracy of
our approximation for systems that have exactly the same
workload inputs, whereas the comparison with the empirical
case is to evaluate the effectiveness of the derived analysis in
guiding the choices of optimal servers and clone levels.

To obtain results for realistic arrival patterns, we rely on the
publicly available Wikipedia trace [12]. We focus on a time
window where inter-arrival times are statistically stationary.
For the empirical query processing time results, we execute
MediaWiki, an open source implementation of Wikipedia,
on our cloud testbed (details can be found in Section VI).
We note that the empirical inter-arrival times show a higher
variability than Poisson arrivals, and the empirical processing
times have a CV around 0.9, which is slightly lower than for
the exponential case. We summarize the validation results for
both models in Fig. 4, where we present the average latency
with respect to different numbers of VMs and clones. We note
that certain combinations of C and r are not shown due to
violations of the system stability conditions. Moreover, we do
not evaluate cases where the number of clones is greater than
the number of VMs, i.e., r > C, as this setting counters the
idea of sending clones to different VMs.

The general observations on model accuracy from Fig. 4 are
as follows. (i) The derived analysis is accurate for the synthetic
traces, even though it is approximate. (ii) The model tends
to be over-optimistic in predicting latency for the empirical
case. This is due to the fact that empirical service times of
clones have lower CV than the exponential times. The higher
the variability of service times is, the better the potential
performance gains from adding clones. (iii) Adding query
clones indeed lowers the latency, provided there are sufficient
VMs. For example, two clones have better performance than
one clone when the number of VMs is greater than 3 (4) for
overhead cancel (no cancel). (iv) The prediction error grows
with the number of clones.

When zooming in on each cloning policy individually,
we can see that for overhead cancel (see Fig. 4(a)-(b)), the

TABLE I: Estimated latency used by the predictor for the
two canceling policies.

Clone canceling policy E[R] = Wq + S

Overhead cancel Eq. (7) + Eq. (8)
No cancel Eq. (10) + Eq. (11)

resulting average errors are 3% and 1% for the synthetic
and empirical case, respectively. When C ≥ 3, the lowest
average latency is achieved by creating 4 clones under both
synthetic and empirical distribution. As for the no cancel case
(see Fig. 4(c)-(d)), the resulting average errors are 7% and
12% for the synthetic and empirical case, respectively. Given
its approximated nature, our model indeed returns remarkably
accurate predictions. In contrast to overhead cancel, the per-
formance gain realized by adding clones is very limited here
due to the higher processing load. When using clones without
the option of canceling, one shall cautiously provide sufficient
VMs to avoid overloads. For example, one shall only consider
using 2 (3) clones when there more than 5 (7) VMs; otherwise
the overhead of processing clones outweighs the performance
gain, compared to the case without cloning, i.e., r = 1.

In a nutshell, our extensive evaluation strongly supports
that increasing the VM provisioning level to accommodate
additional load to process clones can reach a very stringent
latency target which is lower than the average processing time
without cloning. The results also demonstrate the complex
performance dynamics across different types and numbers of
VMs, numbers of clones and canceling policies.

V. DUAL ELASTICITY CONTROLLER

We develop a model-driven dual elasticity controller, Duo-
Scale, which can dynamically and simultaneously scale the
VM provisioning and query cloning. Due to the billing con-
straints and the VM scaling overhead, DuoScale actuates
at two different granularities: VM scaling in macro win-
dows and clone adjustment in micro windows. DuoScale
consists of four main components, monitor, predictor,
clone actuator and VM actuator, depicted in Fig. 5.
The monitor collects inter-arrival times, processing times,
and latencies at every micro window. Based on them, the
predictor forecasts the workload and determines the opti-
mal number of VMs/clones at every micro and macro window.
The two actuators execute the decisions of the predictor.

At every macro window, the predictor forecasts the
arrival rate for the next macro window and determines the
minimum number of VMs that can achieve the target la-
tency subject to the clone canceling policy, according to the
predicted latency summarized in Table I. To accommodate
the errors in predicting the arrival rates, the predictor
looks T micro windows ahead and selects the maximum of
{λ(k), t+ 1 ≤ k ≤ t+T} as the estimated arrival rate for the
next macro window. Hence, DuoScale tends to be conservative
in allocating VMs and this spare capacity can be exploited to
accommodate additional clones. We note that there is a large
selection of time series prediction tools, e.g., [2], which can
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Fig. 4: Model validation for clone canceling policies on synthetic traces (λ = 1, and µ = 1) and empirical traces (λ = 1.5,
and µ = 1).

Fig. 5: Architecture of DuoScale.

effectively predict the average arrival rates. After obtaining
the workload estimates, the predictor makes use of the
closed formulas summarized in Table I to sweep through all
possible combinations of VM and clone numbers, and returns
the combination that can achieve the target latency using the
minimum cost, i.e., the minimum number of VMs. At every
micro window, the predictor forecasts the arrival rate for
the next micro window and computes the optimal number of
clones according to Table I, with the number of VMs fixed by
the macro window.

In this paper, we consider one hour macro windows and
5 minute micro windows in most experiments. Every hour,
the predictor forecasts the average 5-minute arrival rates
for the next T = 12 intervals and chooses the maximum
value as the prediction for the next hour. Every 5 minutes, the
predictor adjusts the clone levels according to the models.
We note that the accuracy of the arrival rate prediction and the
window size can affect the effectiveness of DuoScale, but the
selection of optimal forecast methods and parameters is out of
the scope of this paper.

VI. EVALUATION

In this section we present the average response times and the
cost of applying DuoScale on wimpy VMs, using trace-driven
simulations and experiments on a web application deployed
in the cloud. We compare DuoScale against two baseline
solutions that scale either wimpy or brawny VMs. We first
explain the setup, then summarize the trace simulation results,
and conclude with the test-bed results.
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Fig. 6: 24-hour Wikipedia arrival trace empirical clone service
time distribution normalized to mean arrival rate 7.5 req/sec
and service rate 5 clones/sec.

A. Simulation Setup

We use MediaWiki, the open source platform used to run
the Wikipedia website, as a representative latency-sensitive
web application in the cloud [12] and evaluate DuoScale with
an in-house discrete event simulator based on Omnet++. The
inputs for the simulator are inter-arrival and processing times
that can be drawn from a statistical distribution or empirical
traces. We particularly focus on trace-driven simulation, whose
query arrivals are scaled down from the trace collected at the
real Wikipedia site on September 19, 2007 [13]. In terms of
service times, we use both the exponential distribution and
an empirical distribution collected by deploying MediaWiki
on our cloud testbed. Fig. 6 shows the arrival rate in 5-
minute intervals along one day and the distribution of the
service times. We consider two VM types: (i) wimpy VMs
with an average clone service rate of µ = 5 clones/sec,
and (ii) brawny VMs with an average clone service rate of
µ = 7.5 clones/sec. We assume the price to rent brawny
VMs to be twice that of wimpy VMs, proportional to their
resources, as is common practice in public cloud providers.
However, the service rate of brawny VMs is only 1.5 times
that of wimpy VMs, following observations made on extensive
experimentation on our testbed. The 1.5 gain is in fact an upper
bound on the gains observed in the testbed, which are around
20%. Moreover, we normalize the traces such that the average
arrival rate is λ = 7.5 req/sec.



TABLE II: Comparisons among two VM scale only solutions (WV scale and BV scale) and DuoScale on three canceling
policies: achieving the target latency of 140 ms under exponential and empirical clone processing times.

Target = 140 ms Avg. VMs [#] Normalized cost Avg. clones [#] Exponential Empirical
Resp. time [ms] Violations [%] Resp. time [ms] Violations [%]

WV scale 8.17 2.13 1.00 200.00 100 200.00 100
BV scale 3.79 1.98 1.00 134.5 21.50 134.1 22.19

DuoScale (No cancel) 6.38 1.66 2.01 114.2 2.30 124.3 6.48
DuoScale (10% overhead) 4.54 1.18 3.46 86.7 0.00 112.8 2.02
DuoScale (0% overhead) 3.83 1.00 3.87 88.6 0.70 134.7 34.56

B. Effectiveness of DuoScale

We apply DuoScale to achieve a latency target of 140 ms
per query on a one-day Wikipedia trace, dynamically adapting
the number of VMs every hour and the clone levels every 5
minutes. We also include results from the two baselines that
every hour scale wimpy VMs only (WV scale) or brawny VMs
only (BV scale). To make the comparison fair, WV scale and
BV scale use the same workload inputs as DuoScale and the
same model for scaling, but the number of clones is fixed to
one in both cases. Moreover, when the model predicts there
is no feasible solution, e.g., using WV scale to achieve the
target of 140 ms, we choose the number of servers such that
the marginal gain in response time of adding one server is less
than 0.1%.

Table II summarizes the results for WV scale, BV scale, and
DuoScale with the two canceling policies, namely no cancel,
and overhead cancel with the overhead being 0 and 10%. We
present the average number of VMs per hour, the average
number of clones per query, and the total cost, normalized
by the case of DuoScale with 0 canceling overhead. We also
show the average query response times and the percentage of
violations (micro windows where the average latency exceeds
the target) for both exponential and empirical cases. We
note that as the predictor of DuoScale only uses the
clone average service time as input, it makes the same VM
provisioning and query cloning decisions for both exponential
and empirical cases. We thus do not present separate values
of cost, numbers of servers and number of clones for the
exponential and empirical cases.

General observations. Under all canceling policies, Duo-
Scale and BV scale are able to maintain the target la-
tency, whereas WV scale is not. More importantly, DuoScale
achieves the best mean response times at the lowest cost, i.e.,
it features costs savings between 20 to 50% compared to BV
scale and VM scale. DuoScale uses the smallest number of
VMs (3.83) and the largest number of clones (3.87) under
0 canceling overhead, whereas it uses the largest number of
VMs (6.38) and the smallest number of clones (2.01) under
no cancel. Under no cancel, DuoScale allocates almost twice
as many VMs compared to overhead cancel (particularly 0
overhead) and introduces just enough spare capacity to exploit
cloning. These numbers reflect how DuoScale chooses the
best combination of VMs and clones to achieve the latency
target, and how DuoScale clones more aggressively under
overhead cancel and more conservatively under no cancel due
to the different associated costs of introducing clones. Looking
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Fig. 7: Impact of different fractions of canceling overhead on
DuoScale: number of VMs/clones and average latency.

into the performance at the micro window level, DuoScale
combined with no-cancel gives the most robust results, with
only a small fraction of micro windows, around 5%, displaying
violations. Although BV scale can keep the overall average
latency below the target, i.e., 0.67 seconds, it causes more
(22%) violations and a higher cost.

Exponential v.s. empirical. DuoScale performs better un-
der exponentially distributed service times, offering lower
average latencies and significantly less violations, across all
canceling policies. This is because the variability in the em-
pirical service times is lower than in exponentially distributed
ones, leading the predictor to overestimate the benefits of
clones especially for the 0 canceling overhead case.

C. Impact of the Canceling Overhead

To study the impact of the canceling overhead, we evaluate
DuoScale under canceling overheads ranging from 10 to 90%
with empirical service times. Fig. 7 shows, in the top row, the
number of VMs and clones as decided by DuoScale and, in
the bottom row, the average latency. Remarkably, DuoScale
is able to accurately capture the impact of the overhead and
correspondingly scales up (down) the number of VMs (clones)
as the overhead increases. Recall from Table II that no cancel
requires an average provisioning of 6.38 VMs. Thus, when
the average number of servers needed for overhead cancel
exceeds 6.38 VMs, it is actually preferable to let all clones
continue their execution, instead of canceling them. From
Fig. 7 we observe that overhead cancel offers a reduction
in the number of VMs when the overhead is less than 45%.
The predictor of DuoScale thus offers a mechanism to
evaluate whether canceling should be introduced considering
the associated overhead and potential gains.



D. Cloud testbed

We evaluate the cost-performance effectiveness of the Duo-
Scale prototype on a web service cluster, namely MediaWiki,
hosted on our private cloud. The objective is to deliver a
request within 140 ms against dynamic loads with a mini-
mum amount of provisioning cost. Similar to the previous
subsection, we compare DuoScale against the solution that
only scales brawny VMs (BV scale). The predictor of
DuoScale uses the no cancel model, as we do not cancel clones
after starting the execution.

Testbed Setup We consider two kinds of VMs: wimpy in-
stances, each equipped with two virtual cores and 2 GB RAM;
and brawny instances equipped with 4 virtual cores and 4 GB
RAM. The cost per brawny instance is twice that of a wimpy
instance, following a linear pricing scheme adopted in most
current cloud offerings. MediaWiki is a latency-sensitive web
application composed of Apache (v2.4.7) plus PHP (v5.5.9) as
application server, memcached server, and MySQL (v5.5.40)
as DB server. The requests are generated with httperf [14],
an open-loop workload generator, following the time-varying
arrival rate in Fig. 8(a). To expedite the experiment time,
we use 15 minutes as the length for macro windows and 1
minute for micro windows. For a fair comparison, we use the
predictor of DuoScale to determine the number of VMs
for both VM scaling strategies.

The normalized cost. We summarize the number of servers
used by both strategies in Fig. 8(b). Clearly, DuoScale consis-
tently uses fewer servers than BV scale along the experiment
duration, and the number of VMs used by DuoScale closely
follows the arrival rates. As a result, DuoScale results in a cost
reduction of slightly more than 50% compared to BV scale,
as shown in Fig. 8(c). We note that brawny VMs are less
attractive here than in the simulation results presented earlier,
because the performance of brawny VMs is only 1.2X better
than wimpy VMs in this testbed scenario whereas we assumed
a performance factor of 1.5 in Section VI-B. When such a
performance factor is close to 2, we expect that BV scale can
provide a better cost-performance ratio than DuoScale.

Average latency. Fig. 8(d) presents the average latency:
both strategies fulfill the latency requirements of 140 ms
in a conservative manner. This can be explained by the
conservative prediction of arrival rates. DuoScale has the best
average latency, i.e., around 88 ms, whereas BV scale offers an
average latency around 120 ms. DuoScale thus achieves the
best cost-performance ratio in a practical real-life scenario,
compared to pure resource elasticity. Our results show that
DuoScale is able to adapt to the system dynamics compound
with the arrival rates and clone service rates, and choose
resource provisioning and query redundancy levels in a cost-
effective manner.

VII. RELATED WORK

Performance heterogeneity across and within VM types is
one of the main topics in prior art, with a recent shift towards
meager instances whose resource capacities are very limited.

We highlight studies and techniques which are relevant in
the context of (i) analyzing the performance variability and
(ii) mitigating performance pitfalls by scaling resources and
queries.

Performance variability. Measurement studies in the cloud
point out that the performance variability of VMs can be
grossly classified into (i) longer and (ii) shorter range, depend-
ing on their root causes. The former is often attributed to the
underlying architecture heterogeneity [3, 15] and providers’
policies [16], whereas the latter is often associated with re-
source contention due to co-located workloads [1] or network
interruptions [17], and garbage collection [18]. While [1] uses
the transient CPU throttling of micro instances on the host
side in the order of tens of seconds, [17] puts forward a token
mechanism to allocate network and memory bandwidth to
micro instances, in the order of several minutes. One simple
way to overcome the longer-term VM variability within the
same type is to opportunistically choose VMs with a better
performance [3, 5] and drop the under-performing ones, in
synchronization with the discrete windows of dynamic VM
provisioning. To mitigate the short range variability, several
effective techniques that operate in fine time granularity are
proposed, e.g., scheduling [4] and injecting idling time [1],
but require deep understanding of applications via profiling.

Scaling resources. There is a plethora of studies [19,
20, 21, 22] on elastic resource controllers that determine
the number of VMs and their types such that the costs of
operation, energy, and performance penalty are minimized.
Based on the (predicted) workloads, e.g., number of arriving
queries per second, VMs are (de)allocated to achieve the
target utilization or latency, considering application start up
overheads and the billing cycle of instances. The field data
collected from production datacenters, e.g., IBM [2], shows
that the average utilization is roughly 20%, leaving plenty of
room for additional workloads, including clones.

Query replications. Cloning queries speculatively has been
shown to be an effective strategy to improve the response
time from conventional web services [6] to recent big data
platforms [7, 23], with the implicit assumption of sufficient ca-
pacity to accommodate clones. Reactively cloning queries after
detecting stragglers adds additional delay [24], while proactive
cloning upon arrival demands a higher capacity availability [7].
Being able to cancel the remaining unfinished clones can
increase the room to accommodate more clones, increasing the
probabilities that queries are served by a fast server [25, 6].
Recently developed queueing models [26, 27, 28, 29] that
try to identify the optimal replication levels that achieve the
minimum latency assume clones can be canceled without any
overhead; with the exception of [30] whose computational
overhead hinders its applicability for dynamic workloads,
and [31] which focuses on scheduling policies.

We derive an approximate latency analysis for query repli-
cation with both overhead canceling and no canceling. Thanks
to its closed-form expression and high accuracy, we are able
to efficiently explore the multi dimensional design space, i.e.,
workload patterns, VM types, VM numbers, and clone num-
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Fig. 8: Applying DuoScale on a MediaWiki cluster hosted on cloud with time-varying arrivals, compared with solutions to
scale brawny VMs only.

bers to achieve stringent latency targets using (in)expensive
instances in the cloud.

VIII. CONCLUSION

In this paper, we present DuoScale, a model driven elastic
controller, which simultaneously and dynamically scales both
VMs and query clones against dynamic loads and capacity
variability. The core of DuoScale is a set of analytical models
that can accurately predict the average latency under two
different clone canceling policies, i.e., overhead cancel and no
cancel. By providing slightly more wimpy VMs and making
spare room to process clones, DuoScale is able to achieve very
stringent latency targets that are even lower than the average
processing time of individual wimpy VMs. Extensive results
from trace-driven simulations and a prototype on a cloud
testbed show that DuoScale is able to achieve the target latency
with savings up to 50%, compared to solutions that only scale
wimpy or brawny VMs without scaling query clones.
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measurements in the cloud: observing, analyzing, and
reducing variance,” VLDB Endowment, vol. 3, no. 1-2,
pp. 460–471, 2010.

[16] M. Hajjat, R. Liu, Y. Chang, T. E. Ng, and S. Rao,
“Application-specific configuration selection in the cloud:
impact of provider policy and potential of systematic
testing,” in INFOCOM, 2015, pp. 873–881.

[17] N. Nasiriani, C. Wang, G. Kesidis, and B. Urgaonkar, “A
measurement-based study of effective capacity dynamism
on amazon ec2,” in School of EECS Technical Report No.
CSE-16-005, 2015.

[18] K. Gardner, M. Harchol-Balter, and A. Scheller-Wolf,
“A better model for job redundancy: Decoupling server
slowdown and job size,” in IEEE MASCOTS, 2016.

[19] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska,
“Dynamic right-sizing for power-proportional data cen-
ters,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1378–
1391, 2013.

[20] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen,
“Data center demand response: avoiding the coincident
peak via workload shifting and local generation,” in
Sigmetrics, 2013, pp. 341–342.

[21] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,”
in SoCC, 2011, p. 5.

[22] L. Mashayekhy, M. M. Nejad, and D. Grosu, “A PTAS
mechanism for provisioning and allocation of heteroge-



neous cloud resources,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 9, pp. 2386–2399, 2015.

[23] X. Ren, G. Ananthanarayanan, A. Wierman, and
M. Yu, “Hopper: Decentralized speculation-aware cluster
scheduling at scale,” in SIGCOMM 2015, 2015, pp. 379–
392.

[24] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivaku-
mar, M. Tolton, and T. Vassilakis, “Dremel: Interactive
analysis of web-scale datasets,” PVLDB, vol. 3, no. 1,
pp. 330–339, 2010.

[25] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Rat-
nasamy, and S. Shenker, “Low latency via redundancy,”
in CoNEXT, 2013, pp. 283–294.

[26] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter,
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