
Power of Redundancy: Designing Partial
Replication for Multi-tier Applications
Robert Birke∗, Juan F. Pérez†, Zhan Qiu‡, Mathias Björkqvist∗, and Lydia Y. Chen∗
∗IBM Research Zurich, Rüschlikon, Switzerland. Email: {bir,mbj,yic}@zurich.ibm.com
†Universidad del Rosario, Bogotá, Colombia. Email: juanferna.perez@urosario.edu.co
‡Imperial College, London, United Kingdom. Email: zhan.qiu11@imperial.ac.uk

Abstract—Replicating redundant requests has been shown to
be an effective mechanism to defend application performance
from high capacity variability – the common pitfall in the cloud.
While the prior art centers on single-tier systems, it still remains
an open question how to design replication strategies for dis-
tributed multi-tier systems, where interference from neighboring
workloads is entangled with complex tier interdependency. In this
paper, we design a first of its kind PArtial REplication system,
sPARE, that replicates and dispatches read-only workloads for
multi-tier web applications, determining replication factors per
tier. The two key components of sPARE are (i) the variability-
aware replicator that coordinates the replication levels on all
tiers via an iterative searching algorithm, and (ii) the replication-
aware arbiter that uses a novel token-based arbitration algorithm
(TAD) to dispatch requests in each tier. We evaluate sPARE on
web serving and web searching applications, i.e., MediaWiki and
Solr, deployed on our private cloud testbed. Our results based on
various interference patterns and traffic loads show that sPARE
is able to improve the tail latency of MediaWiki and Solr by a
factor of almost 2.7x and 2.9x, respectively.

I. INTRODUCTION

Performance variability is considered as one of the major
pitfalls in the cloud computing paradigm [27, 12], because
the virtualization technology does not guarantee performance
isolation [15]. Applications hosted in the cloud thus are subject
to interference from unknown neighboring workloads [24, 10].
The more distributed an application is, the higher the prob-
ability that certain components experience interference and
capacity drops. Examples include modern web applications
with standard multi-tier architectures [23], where each server1

can exhibit time-varying capacity. An effective, yet expensive,
solution to combat performance variability in the cloud and
to fulfill service level agreements (SLAs), defined by the tail
latency, is to scale out the provisioned resources in the unit of
virtual machines (VMs). Nonetheless, the amount of resources
required to fulfill SLAs in a cloud environment with highly
varying VM capacities, can grow rapidly [26], and thus hinder
its applicability for highly distributed web applications.

Replicating redundant requests is an inexpensive and yet
effective alternative to improve the tail latency of web ap-
plications [11, 17] and to mitigate the effect of stragglers in
big data applications [6, 7], particularly addressing the issues
of performance variability among computing units. Redundant
requests are issued either right upon their arrival [6, 11] or

1Servers here refer to software components.

after detecting slow servers [21], and only the result of the
first request replica that completes processing is returned to
the user.

The effectiveness of replication depends on the trade-off
between the overhead of processing additional loads and
the potential performance gain of processing request replicas
at fast servers [22, 25]. Furthermore, the variability of the
processing times [9] has been shown to play a central role in
the actual impact of replication on the latency tail [25, 17]. The
main challenges of developing replication strategies are thus to
find optimal request redundancy levels based on the observed
variability, as well as to determine how to best process and
schedule redundant requests. To the best of our knowledge, all
existing studies have centered on a particular application tier,
such as Domain name server and file transfer [25], or map-
reduce-like applications, e.g., SPARK [21]. However, how to
design general replication strategies for distributed multi-tier
web applications hosted in the cloud largely remains an open
challenge, given the workload interdependency across tiers
and the need to avoid any communication overhead among
tiers [28].

In this paper, we develop a PArtial REplication system,
termed sPARE, to exploit workload redundancy for distributed
multi-tier web applications undergoing strong capacity vari-
ability, as for instance in the cloud. We particularly focus on
read-only workloads. Partial replication in sPARE means that
disparate replication factors are defined for each tier, launching
redundant requests to mitigate and exploit the high variability
experienced at specific tiers, which may be caused by neigh-
boring interferences. The aim of sPARE is to use redundant
requests to increase their chances of being processed at fast
servers, which is achieved by deciding the optimal number
of replicas at all tiers and implementing smart dispatching
policies. To this end, the two key features of sPARE are: i) a
centralized replicator that coordinates the replication levels at
all tiers based on the estimated capacity and observed latency
variability, and ii) distributed arbiters at each tier that dispatch
requests to servers for which we propose a novel token-based
arbitration policy (TAD).

We test sPARE on multi-tier web serving and web searching
applications, namely MediaWiki [3] and Solr [5], deployed
at our private cloud testbed. Our extensive evaluation results
for different combinations of interference patterns and loads
show that sPARE is able to improve the latency, particularly



Original Replicas

Page DB Query

(a) Page replicated

Original Replicas

(b) Page and query replicated

Fig. 1: Flows of replicated pages and queries for MediaWiki
by an example of one page containing one DB query.

the tail, by almost a factor of three when compared to the
original non-replicated system. The performance advantage of
sPARE in reducing the latency is particularly significant when
the load and the interference from neighboring workloads are
higher.

The specific contributions arising from the design of sPARE
are three-fold. First, we develop a first of its kind replica-
tion strategy, sPARE, for multi-tier systems, which is able
to adaptively replicate requests at different tiers according
to the observed capacity variability, turning this variability
into a performance advantage, particularly for the latency
tail. Secondly, the proposed arbitration policy, TAD, agilely
adapts to server capacity variations and uses the aggregate tier
capacity, instead of being restricted by the variable per server
capacity. Last but not least, the proposed searching algorithm
is aware of the time-variability in each tier capacity and is able
to reach near-optimal replication levels within a few iterations
for a wide range of loads and interference patterns.

II. THE CASE FOR PARTIAL REPLICATION

In this section, we illustrate how replication might (not)
work out of the box for distributed web applications hosted in
the cloud, where virtual machines undergo different degrees
of capacity variability due to neighboring effects. We base our
description on the MediaWiki application [3] – the open source
platform for Wikipedia, as an example, though it applies in
general for multi-tier applications. Fig. 1 gives a high level
overview of MediaWiki and its main components: multiple
front-end Apache servers and multiple back-end database
(DB) servers. Additionally, both front-end and back-end have
dispatchers in front of the corresponding servers. Fig. 1 gives
a high level overview. The performance metrics of interest
are the mean and tail latency, e.g., 99th percentile, to retrieve
a complete page of Wikipedia. The detailed specification of
MediaWiki and its setup can be found in Section VI.

Next, we introduce interference at the Apache servers,
collocating iperf [2] to create random network transfers
between pairs of VMs, causing both CPU and network con-
tention. Fig. 2(a) shows the performance gains obtained with
replication, measured as the ratio between the latency metric
(mean and the 99th percentile) without replication to the same
metric with replication. Clearly, replicating Wiki pages can
improve the mean and 99th latencies by a factor of 1.5-2.0x.
Instead, Fig. 2(b) shows the same metrics for the case where

1 2 3
0

1

2

Replication factor

Im
pr

ov
em

en
t

fa
ct

or mean
99th

(a) iperf at Apache VMs

1 2 3
0

1

2

Replication factor

Im
pr

ov
em

en
t

fa
ct

or mean
99th

(b) iperf at DB VMs

Fig. 2: Normalized latency of MediaWiki application under
different interference patterns and replication factors.

we introduce interference at the DB servers only, where the
factor of improvement is barely 1.1x. Clearly, replicating page
requests has a more significant effect if the variability is mostly
experienced at the front-end, while it has little impact if the
variability is present at the back-end.

The take-home message is that simple request redundancy is
effective if the capacity variability is observed at the front-end,
but it offers little gains when this variability is present at other
tiers. Consequently, we advocate request partial replication,
where requests are replicated at those tiers experiencing high
capacity variability, instead of uniformly replicating requests
at each tier.

III. SPARE: PARTIAL REPLICATION SYSTEM

We now introduce sPARE, a PArtial REplication system
for distributed multi-tier applications, which determines the
replication factors for all tiers and arbitrates the dispatching
of requests (and their replicas). We particularly focus on read-
only requests and continue using MediaWiki as an example.
We note that while a large body of related work [7, 21] centers
on replicating requests reactively after detecting performance
degradation, we focus on a proactive strategy since the “fast”
system dynamics, e.g., hundreds of msec at tier 1 and few
msec at tier 2 for MediaWiki, limit the benefits of a reactive
approach given the delay necessary to identify potential strag-
glers and submit replicas. In the following, we first detail out
the design features of sPARE and conclude with the analysis
of the collision probability at tier 2.

A. Architecture Overview

To achieve the dual goals of obtaining optimal replication
factors and replication-aware arbitration, sPARE relies on
two key components: a centralized replicator and distributed
arbiters at each tier. These two components are depicted in
Figure 3: one arbiter for each tier and one sPARE replicator.
There are Mi server at tier i.

B. Centralized replicator.

The central replicator determines the replication factor for
each tier, (r1, r2), based on the load and capacity variability
at each tier, which are derived from statistics collected by the
arbiters. Particularly, the replicator searches (r∗1 , r

∗
2) within a

set of boundary conditions that ensure the system stability and



sPARE

Replicator

Tier 1

1

2

M

Apache server

DB server

Workload

Monitor

Request

Handler

Server

Selector

sPARE Arbiter Tier 1

Tier 2

1

M2

Workload

Monitor

Request

Handler

Server

Selector

sPARE Arbiter Tier 2

Fig. 3: Example architecture of sPARE with MediaWiki.

pose a bound on the collision probability, as described in detail
in Section V.

C. Distributed arbiters.

The arbiters actuate the replication decisions of the replica-
tor by replicating requests and dispatching them to the servers
in their tier. Each arbiter implements three logical blocks:
server selector, request handler, and workload monitor. The
server selector is responsible for choosing fast servers for the
request handler, whereas the request handler is responsible for
cloning the incoming requests and dispatching them to the
servers in the tier. The workload monitor passively collects
the key statistics required by the replicator.

sPARE offers support for two types of arbitration policies,
namely round-robin (RR) and TAD. Whereas RR is load
oblivious and distributes requests immediately to the servers
at the tier, TAD is aware of the load and capacity variability at
each tier. Although RR is known to have a robust performance
and low implementation overhead, we expect a load-aware ar-
bitration, such as the proposed TAD, to be able to better sustain
the extra workloads introduced by replication. Moreover, TAD
increases the probability that requests are processed by fast
servers hosted on VMs with low interference.

Finally, sPARE supports multiple protocols via specific
arbiters. This allows for protocol specific optimizations, as
well as easy protocol extension via additional arbiters. We
have developed arbiters for the HTTP and MySQL protocols.
The details of the protocol-independent characteristics of the
TAD arbiter and the replicator are explained in Sections IV
and V, respectively.

1) Connection Reuse: Another feature of the sPARE arbiter
is its ability to reuse connections. To reduce the overhead
to process the extra load created by replication, particularly
for the MySQL protocol, sPARE reuses connections to the
servers across different requests. Essentially, connection reuse
can avoid the latency overhead not only of the TCP three-
way handshake, but also of any protocol specific connection
setup phases. Whereas the impact is limited for HTTP requests
with no setup phases, this optimization greatly benefits the
MySQL protocol, which includes an initial handshake and
authentication phase.

D. Tier 2 Collision Probability

Each arbiter fully manages the local replication within its
tier, hence it is straightforward to select different servers for

the local replicas. However, each arbiter is unaware of the
tree-like relationship between local requests and child requests
in later tiers, such as the relationship between page requests
and DB queries in the MediaWiki example. Consequently,
DB queries originated from the same page request can be
sent to the same DB server in tier 2. We define the tier
2 collision probability Pc, under replication factors (r1, r2),
as the probability that at least one DB server receives more
than one query from the same page request. Thanks to the
connection re-use mechanism, this is equal to the probability
that at least one DB server receives more than one connection
from the same page request.

If r1=1, Pc is zero, since each page request is submitted
only once to tier 1, and the tier 2 arbiter avoids all collisions
between DB queries of the same page replica. For the case
r1>1, to obtain Pc we focus on the non-collision probability
Pn=1−Pc to derive the following.

Proposition 1: The tier 2 non-collision probability under
replication factors (r1, r2) is

Pn =

∏r1−1
j=0

(
M2−jr2

r2

)(
M2

r2

)r1 . (1)

The proof comes straightforwardly as there are no tier 2
collisions if all r1r2 connections are made to different DB
servers. We note that when the total number of query replicas
is at least as large as the number of tier 2 servers, i.e.,
r1r2≥M2, the collision probability is simply one.

Replicas that collide can not benefit from the diversity of
capacity variability, defeating the goal of replication. One can
also see from Eq. (1) that the collision probability increases
very fast with both r1 and r2.

E. Tier N Collision Probability

To extend the above result to the N -tier case we define the
amplification factor ai,j , which is the total number of tier-j
requests that correspond to each request in tier i, with 1 ≤
i ≤ j ≤ N . Thus, under replication factors (r1, r2, . . . , rN ),
ai,j =

∏j
k=i rk. Next, we notice that tier j receives ai,j−1

requests for each request in tier i, each of which it processes
independently, replicating them rj times. We can thus state
the following result for P i,j

c , the collision probability of tier-i
requests at tier j, and its complement P i,j

n .
Proposition 2: The non-collision probability P i,j

n = 1−P i,j
c

under replication factors (r1, r2, . . . , rN ) is

P i,j
n =

ai,j−1−1∏
k=0

(
Mj−krj

rj

)
(
Mj

rj

)ai,j−1
. (2)

As before, if the amplification factor ai,j is one, the collision
probability is simply zero. Finally, as we are interested in the
collision probability as seen from the first tier, the tier-N non-
collision probability is given by (2) with i=1 and j=N .



Token

Pool

Server

Selector

Request

Handler
C

o
n
n
.

H
a
n
d
le

r

N
e
w

C
o
n
n
e
c
ti

o
n

Token Queue

Replica Queue
Connection n

Connection 2

Connection 1

Workload

Monitor

Requests
Replica

Replic
a

Servers

Fig. 4: Arbiter design with TAD.

IV. TAD: TOKEN-BASED ARBITRATION

The objective of the TAD policy is to explore the spatial
capacity variability across servers using replicated requests.
The key design principle of TAD is a lightweight mechanism
that is aware of the replication and the capacity variability
without actively probing the servers’ speeds. To achieve this,
the selection of servers and dispatching of requests is based
on the concept of tokens. Each token represents an admission
ticket for a request to be processed at the corresponding server.
TAD assigns tokens to incoming connections to process all re-
quests therein. Tokens are a cheap mechanism to dynamically
adapt the server load to its capacity, by implicitly limiting the
arrival rate at each server by the token returning rate. In the
following we describe the TAD-based arbiter implementation
in detail.

A. Arbiter Implementation

The arbiter is initialized with one or more tokens per server,
which are maintained in a central token pool. Fig. 4 illustrates
the internal design of the TAD-based arbiter including the
token pool. The arbiter listens for incoming connections,
which are handled in a multi-threaded fashion. For every
connection, the arbiter spawns a new pair of server selector
and request handler threads and reroutes all related requests
to it. Hence every server selector and request handler pair is
dedicated to a specific connection, whereas the token pool is
shared across all connections.

After the creation of a server selector and request handler
pair, the server selector immediately starts scanning the token
pool to acquire tokens of fast servers and hands them over
to the request handler via a token queue. The request handler
waits for requests to arrive, which it then clones and stores
the replicas in a replica queue. As soon as both queues are
not empty, the request handler retrieves a token-replica pair
from the head of each queue, and dispatches the replica to the
server specified by the token. Once a replica completes, the
token is returned to the token queue, whereas at the end of
the connection tokens are returned to the token pool.

1) Server Selector: Motivated by the effectiveness of the
power of many [21] in reducing latency, we incorporate this
idea when scanning for tokens. At any tier i the server selector
acquires ri tokens by performing ni+ri token look-ups, i.e.,
ni is the number of additional look-ups, so as to maximize

the probability of finding the fastest ri available servers. In a
cloud setting these fastest servers may be those not currently
being disturbed by neighbors. Moreover, the server selector
skips tokens of the same server to avoid collisions between
local replicas of the same request.

2) Request Handler: The request handler continuously
replicates incoming requests and dispatches the replicas to the
servers. Once the first replica completes, the response is sent
back. The other replicas will be discarded but not canceled
due to the non-negligible canceling overhead, which may
easily nullify the effort. This is especially true in our example
applications with msec latencies. However, the request handler
tries to avoid unnecessary resource usage by not submitting
replicas of an already completed request, e.g., when the first
replica completes before all tokens for this connection are
allocated.

Choice of Ci The performance of TAD depends very much
on the number of tokens per server Ci. A low number of tokens
can under-utilize the resources, e.g., limiting the number of
concurrent executions, and potentially lead to long replica
queueing times at the request handler waiting for tokens. To
determine the number of tokens, we empirically experiment
with different Ci, for different load conditions and replication
factors. The rule of thumb practice here is that we choose a
number of tokens that is able to maintain the system stable
and bound the waiting time at the arbiter. A more in-depth
discussion can be found in Section V-A2.

3) Performance Monitor: The workload monitor collects
key statistics about replicas, requests and connections, to be
fed to the replicator. All the monitoring is done passively to
keep the impact on the system to a minimum. More details on
the specific statistics collected are found in Section V.

V. REPLICATOR

The sPARE replicator determines the replication factors
(r1, r2, . . . , rN ) for all N tiers, based on the observed latency
variability, constraints on stability, as well as a predefined limit
on the collision probability. As the value of ri at each tier i
is bounded by the number of servers Mi at the tier, the total
number of replication factor combinations is thus given by the
product

∏N
i=1Mi, resulting in a large search space.

To perform a fast search for the optimal replication fac-
tors, the replicator first leverages two boundary conditions:
i) a set of system stability conditions; ii) a limit on the
collision probability at tier N . These conditions define a
narrower search space, termed as the feasible set. Afterward,
the replicator iteratively searches through potential replication
factors based on the observed latency variability at each tier.
Thus, the operation of the replicator consists of two steps:
i) estimating the average tier capacity, which is necessary to
define the stability conditions, to determine the feasible set;
ii) searching for the optimal replication decision within the
feasible set. In particular, estimating the tier capacity requires
considering both the server speed to process requests, as well
as the availability of tokens when applying the TAD policy, as
the number of tokens needs to be appropriately dimensioned



to prevent them from becoming a bottleneck. The following
sections detail these steps.

A. Estimating Average Tier Capacity

As we consider two types of resources, i.e., servers and
tokens (when using TAD arbitration), we estimate two types
of average tier capacity, namely server processing capacity
and token processing capacity. The former is defined as the
average number of requests that can be processed by all the
servers at a tier per time unit, whereas the later defines the
average number of connections that can be sustained by all
the tokens at a tier per time unit. To make each tier stable,
sPARE ensures that request arrival rates and connections
arrival rates are less than the server and token processing
capacity, respectively. We note that capacity estimation is long
considered a challenging research topic, particularly for the
case of concurrent execution.

1) Server Processing Capacity: To estimate the server
processing capacity at tier i, we need to estimate the average
processing speed per server hosted by a VM in the tier. As we
consider multi-core VMs, we actually estimate µi, the average
number of requests processed by each core per unit of time. As
each VM at tier i has Vi virtual cores, the total tier capacity,
i.e., the average number of requests that can be processed by
a tier, is the product of the processing speed µi of each core,
the number of cores Vi per server, and the number of servers
Mi in tier i, i.e., µiViMi.

To find µi, we focus on its inverse Ti = 1/µi, which is the
expected processing time of a request by a core at tier i. Due
to the processor-sharing core operation, in the estimation of
Ti we need to take into account that a request receives only
a fraction of the processing capacity of a server during its
execution, and this fraction depends on the number of requests
executing concurrently. Thus to obtain Ti, and given that we
want to keep the required monitoring overhead to a minimum,
we rely on the simple Baseline (BL) estimation algorithm
introduced in [16], which uses as input the request arrival and
departure times at each server. The basic idea of the algorithm
is to keep track of the number of concurrent requests and split
the corresponding CPU time across the requests with special
care to handle multi-core scheduling. Observations from a
few hundred requests are typically enough to obtain a reliable
estimate [16].

After obtaining µi, we can write the stability constraint on
the server processing capacity as

λiri < MiViµi. (3)

which ensures that the total request arrival rate λiri at tier i
is less than the total tier processing capacity. Recall that the
arrival rate λi already includes the amplification caused by the
replication at any tiers upstream of tier i.

2) Token Processing Capacity: In addition to the tier server
processing capacity constraint in Eq. (3), the tokens introduced
with TAD become a soft resource and their scarcity can limit
the system capacity. We are thus interested in estimating the
token processing rate µK

i , the inverse of which, TK
i = 1/µK

i ,

is the average time that a token is held by a connection.
As each of the Mi servers in tier i issues Ci tokens, the
token processing capacity at tier i is the product of the token
processing rate µK

i and the total number of tokens CiMi, i.e.,
MiCiµ

K
i . As with the server processing rate, we estimate the

token processing rate via its inverse TK
i = 1/µK

i . Note that the
processing time TK

i per token is different from the effective
request processing time Ti of a request. The processing time
of a token in any tier i includes not only the processing of
all the requests in a connection in this tier, but also the time
spent waiting for processing at any other downstream tiers. We
can estimate the token processing time TK

i by keeping track
of the token allocation and release times. From a set of such
observations we can obtain the mean TK

i and the associated
mean processing rate µK

i = 1/TK
i of each token.

To ensure the token processing stability, the token demand
rate should be less than the token processing capacity. As one
token is used for each arbiter-server connection, the token
demand is essentially the product of the connection arrival
rate λconni , and the replication factor at this tier ri, thus

λconni ri < MiCiµ
K
i . (4)

We note that the connection arrival rate is the request arrival
rate divided by the average number of requests within each
connection.

Now we can leverage this token stability constraint to
determine the minimum number of tokens that can satisfy the
token demands for any feasible replication factor. Particularly,
assume rmax

i is the maximum replication factor at tier i that
is considered feasible, i.e., it complies with constraints (3)
and (4) and can be identified through off-line profiling. Thus
the minimum number of tokens at tier i is

Ci >
λconni rmax

i

MiµK
i

. (5)

Note that this limit is only a lower bound and we can set Ci

to be the smallest integer that complies with this constraint.

B. Finding the Optimal Number of Replicas

To determine the optimal number of replicas we rely on
three key observations: i) the introduction of replication is
most helpful when the request processing times, and therefore
the latency, are highly variable; ii) adding replicas is only
feasible when the system has enough (token) capacity to
process the additional load introduced, as established by the
stability constrains (3) and (4); iii) the gains obtained with
replication are more significant when the diversity of the
resources is exploited by submitting replicas of any request
to different servers in all tiers. Thus we introduce a limit on
the collision probability, as defined in Eq. (1). Based on these
observations, we define Alg. 1 to find the optimal number
of replicas for a given target metric RT , and a measure of
the variability in each tier wi. In this study we consider the
mean, 95th, and 99th percentiles of tier 1 latency as target
metrics, while for the variability measure we adopt the ratio of
a percentile, either the 95th or the 99th, to the mean latency.



However, the search algorithm is flexible to consider other
target and variability metrics, e.g., the latency variance.

The algorithm inputs are the estimated request arrival rate,
connection arrival rate, tier capacity, token capacity, target and
variability metrics. The first step in Alg. 1 is to determine
the set F of feasible replication factors r = (r1, r2, . . . , rN ).
We consider r feasible if it complies with the stability con-
strains (3) and (4) at each tier, and the resulting collision
probability (1) is at most equal to a pre-defined threshold
Pmax
c ≤ 1. These constraints make the set F relatively small,

especially because the collision probability increases very fast
with any ri, and because the load in tier N increases with∏N

i=1 ri. Whereas our experiments focus on the two-tier case,
with MediaWiki as our running example, Alg. 1 is stated for
the general N -tier case, where the threshold Pmax

c is applied
to the collision probabilities P 1,j

c , for j = 2, . . . , N , shown in
Section III-D

The algorithm searches for the optimal r∗ within the feasi-
ble set, F , by iteratively (a) selecting a new feasible r̃ in the
neighborhood of the current one based on the measured latency
variability wi, and (b) testing the potential r̃ and measuring
the achieved latency R̃T . The initial r is with all replication
factors set to 1, i.e., r = (1, . . . , 1). For each r we run, we
define a set of feasible directions, I, which holds the indexes
of the tiers i whose replication factor ri can be increased such
that the neighbor point r̂ = r, r̂i=ri + 1 is still in F .

From the set of feasible directions I, the algorithm chooses
the tier with the highest variability measure (line 6 in Alg. 1),
and runs the associated neighbor point r̃. Ties can be broken
arbitrarily. If the target metric RT is reduced compared to
the values obtained with the current r̃, we update r to this
neighbor and continue the search process (lines 9-11 in Alg. 1).
However, when no improvement is observed, we remove all
points in this direction from set F , including the point just
evaluated (line 13 Alg. 1). In both cases, we update the set
of feasible directions I and continue the search. The search
algorithm stops when the set of feasible directions I becomes
empty.

VI. EVALUATION

In this section, we evaluate the use of sPARE on distributed
multi-tier applications, i.e., web serving and web searching,
as a mechanism to defend latency under various performance
variability patterns, load conditions and cloud setups. Partic-
ularly, we deploy sPARE on MediaWiki [3] and Solr [5] in
a controlled environment – our private cloud testbed, where
we can control the neighboring effect. We focus on the mean
and high percentile latency, i.e., 95th and 99th percentiles, as
performance metrics. In the following, we present the results
of MediaWiki and Solr on our private cloud testbed

A. Testbed

Our private cloud testbed is composed of eight identical
physical servers, seven used to run the experiments and one
used as experiment orchestrator and repository. Each server is

Algorithm 1 Computing the optimal number of replicas.
Target metric is RT and variability metric is wi.

Require: λi, µi, Vi, Mi, Pmax
c and λconni , µK

i (if TAD is
used), for i ∈ [1, N ]

1: Determine set F based on (1), Pmax
c , (3) and (4)

2: r = (1, 1, . . . , 1)
3: I = {i|∃r̂ = r, r̂i = ri + 1, r̂ ∈ F}
4: Measure RT and wi under r
5: while I 6= ∅ do
6: Choose tier j = argmaxi∈I{wi}
7: r̃ = r, r̃j = rj + 1
8: Measure R̃T and w̃i under r̃
9: if R̃T < RT then

10: r = r̃
11: RT = R̃T , wi = w̃i for i ∈ [1, N ]
12: else
13: F = F \ {r̃|r̃j > rj , r̃i = ri, i 6= j}
14: end if
15: I = {i|∃r̂ = r, r̂i = ri + 1, r̂ ∈ F}
16: end while
17: return r

httperf MediaWiki MySQL

Fig. 5: MediaWiki Architecture

equipped with 32 cores, 128 GB DDR4 RAM, six 1-TB solid
state disks in RAID5, and two 10-Gigabit Ethernet adapters.
Each component of MediaWiki and Solr is deployed on an
individual VM equipped with 2 virtual cores and 4 GB of
memory. The same holds for the three sPARE components,
i.e., one replicator and two arbiters, but the arbiters are hosted
on larger VMs, i.e., equipped with 8 cores, to ensure that they
are not the bottleneck. Three components of sPARE, i.e., one
replicator and two arbiter, are deployed are individual VMs.

Neighboring Workload To emulate performance variability
in the cloud, particularly the public cloud, we artificially
spawn neighboring workloads following Poisson arrivals with
mean inter-arrival time of 40 sec and exponential run times
with mean of 10 sec. The specific neighboring workload
used is iperf [2], emulating file transfers via the network.
Particularly, we consider three types of interference patterns
(i) interference 1: iperf is active on tier 2, (ii) interference 2:
iperf is active on both tiers, and (iii) interference 3: iperf
is

B. MediaWiki: Web Serving Application

MediaWiki is a latency-sensitive web application composed
of Apache (v2.4.7) plus PHP (v5.5.9) as front-end application
server, and MySQL (v5.5.40) as back-end DB server. We
generate random wiki page requests with httperf [1], an open-
loop workload generator. Fig. 5 summarizes the software
chain. We evaluate sPARE in this MediaWiki cluster under
two request rates, i.e., λ1=20 and 5 page requests per second,



TABLE I: MediaWiki latency [sec] without replication.
λ1 pattern 1 pattern 2 pattern 3

[pps] mean 95th 99th mean 95th 99th mean 95th 99th

20 0.73 1.35 1.80 0.89 2.09 3.08 0.75 1.96 2.84
5 0.70 1.28 1.68 0.92 2.15 3.16 0.79 2.07 3.01

and all three interference patterns, for a total of six load
scenarios. We configure sPARE with TAD in both tiers, where
the number of tokens per server in tier 1 and tier 2 is 1
and 12, respectively, and the collision probability threshold
is Pmax

c = 0.5.
Wiki Baseline Before showing the latency improvement

achieved by sPARE, we first summarize the latency metrics
of the original MediaWiki system in Table I, as comparison
baseline. As pattern 2 imposes a high variability on both tiers,
we can see that the difference between the latency mean and
99th percentile is larger than for the other two patterns.

1) Improvement in Latency Metrics: Fig. 6 summarizes the
performance gains of sPARE and simple-replication over the
original MediaWiki in terms of the normalized tier 1 page
latency, for all the six scenarios considered. For the sPARE
replicator, in Alg. 1 we set the target metric according to the
metric of interest, i.e., the mean, 95th and 99th percentile of
tier 1 response time, and the variability metric as the ratio
between the percentile of interest, or the 95th if the target is
the mean, and the mean.

Clearly, sPARE is able to achieve considerably better per-
formance gains than simple-replication, with a factor ranging
between 1.5 and 3, depending on the metrics of interests
and the interference patterns. There are two key observations.
Firstly, the higher the variability is, the higher the performance
gains that can be achieved by sPARE. When iperf interfer-
ence occurs at both Apache and DB servers, i.e., pattern 2,
sPARE can improve the page tail latency by a factor of 2.1x
to 2.7x, whereas the performance gain of partial replication is
less significant for weaker interference patterns, i.e., 1.5 and
2.7, where iperf only occurs at either Apache or DB tier.
This observation resonates well with the original motivation
of sPARE: defeat the performance disadvantage caused by the
capacity variability and turn it into an advantage. Secondly,
the power of partial replication is particularly significant for
the tail latency, i.e., 95th and 99th percentiles.

Let us zoom into the individual interference patterns. On the
one hand, under inference pattern 1, one can see that sPARE
can achieve a factor of 1.7x improvement for the page latency
across all metrics considered. In contrast, simple-replication
barely gains, compared to the no-replication WikiMedia sys-
tem, because replicating only tier 1 requests does not really
address the performance variability happening at tier 2. On the
other hand, under pattern 2 where iperf is active on both
tiers, sPARE still outperforms simple-replication, with a even
bigger difference than pattern 1. The smaller gain in pattern
1 is attributed to the fact that executing all the DB queries
in a page requires on average 127 msec, which is just 26%
of the average page latency of 482 msec. Thus most of the
page execution time occurs in tier 1, where no interference

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r

sPARE Simple

(a) pattern 1: λ1 = 20 pps

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r

sPARE Simple

(b) pattern 1: λ1 = 5 pps

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r

sPARE Simple

(c) pattern 2: λ1 = 20 pps

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r

sPARE Simple

(d) pattern 2: λ1 = 5 pps

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r
sPARE Simple

(e) pattern 3: λ1 = 20 pps

mean 95th 99th
0

1

2

3

Im
pr

ov
em

en
tf

ac
to

r

sPARE Simple

(f) pattern 3: λ1 = 5 pps

Fig. 6: Factor of page latency improvement: comparing sPARE
and simple-replication strategy under scenarios of two arrival
rates and three interference patterns.

in present with pattern 1. Also, under interference pattern 3,
simple-replication comes close to sPARE for the case with
λ1=20. However, when the baseline load is low, i.e., λ1=5,
sPARE reduces all three latency metrics under all interference
patterns.

We further compare the replication factors and latency of
sPARE, against the empirical optimal values that are found
through exhaustive search. Due to the space limit, we skip
the presentation of detailed statistics and only report the final
values here. For λ1 = 2 pps, sPARE attains the empirical
optimal mean, 95th, and 99th for all patterns. For λ2 = 5 pps,
sPARE achieve latency that 4 % higher the empirical optimal
for most of combinations of patterns and metrics, except 99th

at the third pattern.

C. SOLR: Web Searching

httperf Solr PHP UI Solr Nutch
MySQL

HBase

Fig. 7: Solr Architecture.

Our Web Searching use case is based on Nutch [4] and
Solr [5]. Nutch crawls the web for documents to index,
whereas Solr creates the search index and answers the queries.
Fig. 7 shows the complete software chain which can be split



at the boundary between Solr and Nutch. This is highlighted
in yellow and green colors. The green part operates as a
batch workload used to create and update the search index.
It comprises Nutch (v2.1.2) plus a storage backend, e.g.,
HBase or MySQL among others. Here we settle for MySQL
(v5.5.40). We initialize the benchmark by first using Nutch
to crawl 50000 random URLs from the dmoz repository and
then sending the fetched documents to Solr to be indexed. This
workload is performed only once before running our tests and
is not affected by sPARE.

We apply sPARE on the yellow part in Fig. 7, which handles
the interactive user requests. It comprises replicated instances
of Solr-PHP-UI (v15.12.11) and Solr (v4.10.4). Solr-PHP-UI
offers a web-based user interface to access the query API of
Solr. Search requests are generated with httperf [1]. This part
is similar to the MediaWiki setup, but Solr-PHP-UI and Solr
communicate via HTTP, hence the tier 2 arbiter is an HTTP
arbiter. The other notable difference is that each request at
the web GUI mostly forwards only one request to the Solr
back-end.

In the following, we evaluate the effectiveness of sPARE to
reduce page and query latency for Solr. Here we use TAD on
both tiers, with 1 and 3 tokens per server at tier 1 and tier 2,
respectively, and Pmax

c = 0.5 as collison probability threshold
for the replicator. We focus on scenarios with interference
patterns 1 and 2, and with request arrival rates λ1 = 40 and
λ1 = 10. Before evaluating the effectiveness of sPARE to
reduce page and query latency for Solr, we first summarize the
latency metrics obtained from the baseline Solr in Table II.

TABLE II: Latency [msec] of Solr without applying replication
strategy.

λ1 pattern 1 pattern 2
[pps] mean 95th 99th mean 95th 99th

40 28.6 56.6 97.8 35.3 87.6 173.7
10 23.8 45.7 86.5 35.9 90.8 167.0

1) Improvement in Latency: We summarize the factor of
latency improvement in Fig. 8, comparing to the baseline
latency for different scenarios. While the improvement for the
mean latency is comparable to Mediawiki, sPARE achieves
a remarkable performance gain for the 99th percentile, with
factors ranging between 2x and 7x, for both page and query
requests. The best improvement factor with sPARE is achieved
for the 99th percentile of page latency, under interference
pattern 2, supporting the effectiveness of sPARE in defeating
the long tail latency caused by high capacity variability. We
also observe that sPARE is able to provide the largest gains
on those tiers that suffer the largest variability. Thus, under
interference pattern 1 the gains are more significant for the
query latency, while under pattern 2 the gains are very similar
for page and query latency. In addition, while the gain in mean
is close to a factor of 2, the gains for the tail percentiles are
much larger, factors of up to 6x for both page and query 99th

latency percentile. The highest percentiles, which suffer the
largest degradation due to the capacity variability, are the most
benefited by the introduction of sPARE. Moreover, thanks to

mean 95th 99th
0

2

4

6

8

Im
pr

ov
em

en
tf

ac
to

r page
query

(a) pattern-1, λ1 = 40 pps

mean 95th 99th
0

2

4

6

8

Im
pr

ov
em

en
tf

ac
to

r page
query

(b) pattern-1, λ1 = 10 pps

mean 95th 99th
0

2

4

6

8

Im
pr

ov
em

en
tf

ac
to

r page
query

(c) pattern-2, λ1 = 40 pps

mean 95th 99th
0

2

4

6

8

Im
pr

ov
em

en
tf

ac
to

r page
query

(d) pattern-2, λ1 = 10 pps

Fig. 8: Solr: Factor of page and query latency improvement
of sPARE under scenarios of two arrival rates and two inter-
ference patterns.

the TAD arbiter, the performance gains of either page and
queries are higher for the higher arrival rate, meaning that
sPARE arbiters are able to efficiently leverage the spatial ca-
pacity variability across servers and sustain a high replication
loads. Combining observations from MediaWiki, we summa-
rize that sPARE can effectively improve the performance of
distribution multi-tier applications, particularly under higher
capacity interference, for tail latency of the tier 2 requests.

VII. RELATED WORK

Speculatively replicating requests has been shown to be an
effective strategy to strengthen the system dependability [13]
and to improve the response time [25, 20, 19], particularly the
high percentiles. Most work on replication centers on a single
tier for a wide range of applications, from conventional web
services [11, 8], to recent big data platforms [6, 21]. Repli-
cation policies in web and big data systems can be grossly
classified by the issuing time of the replicated requests and
by the canceling policy on the remaining redundant requests.
Dolly and Grass [6, 7] advocate the efficacy of cloning all
MapReduce tasks upon their arrivals, instead of spawning the
replicated tasks after receiving inferior performance indication
– a typical practice in speculative computing [14]. Upon
receiving the first result from replicated requests/jobs, the
majority of replication policies leave the rest of replicas in
the system due to the overhead of terminating requests, while
a small number of studies show the benefits of terminating
requests for certain benchmarks [11, 18]. To best harvest the
performance gain brought by request redundancy, Hopper [21]
further develops a replication-aware scheduling algorithm for
Spark.

In contrast to the related work, sPARE explores request
redundancy in the scenario of multi-tier applications hosted in
the cloud, where each tier faces highly varying capacity and
load dynamics are tightly interdependent across tiers. sPARE



combines the strategies of tier-specific optimal replication
and fine-grained arbitration, exploiting the latency variability
across servers and tiers.

VIII. CONCLUDING REMARKS

To guarantee latency performance for multi-tier applica-
tions’ in the cloud, where high capacity variability is experi-
enced, we propose a partial replication strategy, sPARE, which
introduces workload redundancies according to the load and
capacity variability observed in each tier. sPARE features a
centralized replicator, which can attain near-optimal replica-
tion factors, and a distributed token-based arbiter, whose multi-
threaded design and lightweight implementation effectively
dispatches replicated requests to fast servers. Our extensive
evaluation results, applying sPARE to multi-tier web serving
and web searching applications, show that the proposed design
and implementation of partial replication can greatly improve
the latency, particularly its tail, under diverse neighboring in-
terference patterns. In summary, sPARE is able to significantly
improve the latency for multi-tier applications in the cloud,
turning the pitfall of capacity variability into a performance
advantage.

ACKNOWLEDGMENT

This work has been partly funded by SNSF projects 407540
167266 and 200021 141002. The research of Juan F. Pérez
has been supported by the ARC Centre of Excellence for
Mathematical and Statistical Frontiers (ACEMS).

REFERENCES

[1] httperf. http://www.hpl.hp.com/research/linux/httperf.
[2] iperf. http://iperf.sourceforge.net.
[3] Mediawiki. https://www.mediawiki.org.
[4] Nutch. http://nutch.apache.org.
[5] Solr. http://lucene.apache.org/solr.
[6] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Sto-

ica. Effective straggler mitigation: Attack of the clones.
In NSDI, pages 185–198, 2013.

[7] G. Ananthanarayanan, M. C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu. GRASS: trimming stragglers
in approximation analytics. In NSDI, pages 289–302,
2014.

[8] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. N. Rao. Improving web availability for clients with
MONET. In NSDI, pages 115–128, 2005.

[9] M. Björkqvist, L. Y. Chen, and W. Binder. Opportunistic
Service Provisioning in the Cloud. In IEEE CLOUD,
pages 237–244, 2012.

[10] L. Y. Chen, D. Ansaloni, E. Smirni, A. Yokokawa, and
W. Binder. Achieving application-centric performance
targets via consolidation on multicores: myth or reality?
In HPDC, pages 37–48, 2012.

[11] J. Dean and L. A. Barroso. The tail at scale. ACM
Commun., 56(2):74–80, 2013.

[12] B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D.
Bowers, and M. M. Swift. More for your money:

exploiting performance heterogeneity in public clouds.
In SoCC, page 20, 2012.

[13] S. Jain, M. J. Demmer, R. K. Patra, and K. R. Fall.
Using redundancy to cope with failures in a delay tolerant
network. In SIGCOM, pages 109–120, 2005.

[14] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivaku-
mar, M. Tolton, and T. Vassilakis. Dremel: Interactive
analysis of web-scale datasets. PVLDB, 3(1):330–339,
2010.

[15] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
Managing performance interference effects for qos-aware
clouds. In EuroSys, pages 237–250, 2010.

[16] J. F. Pérez, G. Casale, and S. Pacheco-Sanchez. Es-
timating computational requirements in multi-threaded
applications. IEEE TSE, 41:264–278, 2015.

[17] Z. Qiu and J. F. Pérez. Evaluating the effectiveness of
replication for tail-tolerance. In CCGrid, pages 443–452,
2015.

[18] Z. Qiu and J. F. Pérez. Evaluating replication for parallel
jobs: An efficient approach. IEEE Trans. Parallel Distrib.
Syst., 27(8):2288–2302, 2016.

[19] Z. Qiu, J. F. Pérez, R. Birke, L. Y. Chen, and P. G.
Harrison. Cutting latency tails via replication: Analysis
and experimental validation. Technical Report RZ 3908,
IBM Research, 2017.

[20] Z. Qiu, J. F. Pérez, and P. G. Harrison. Variability-
aware request replication for latency curtailment. In
INFOCOM, pages 1–9, 2016.

[21] X. Ren, G. Ananthanarayanan, A. Wierman, and
M. Yu. Hopper: Decentralized speculation-aware cluster
scheduling at scale. In SIGCOMM 2015, pages 379–392,
2015.

[22] N. B. Shah, K. Lee, and K. Ramchandran. When do
redundant requests reduce latency? In Allerton, pages
731–738, 2013.

[23] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and
A. N. Tantawi. An analytical model for multi-tier internet
services and its applications. In Sigmetrics, pages 291–
302, 2005.

[24] J. Vallone, R. Birke, L. Y. Chen, and B. Falsafi. Con-
tention detection by throttling: A black-box on-line ap-
proach. In IWQoS, pages 237–242, 2015.

[25] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Rat-
nasamy, and S. Shenker. Low latency via redundancy. In
CoNEXT, pages 283–294, 2013.

[26] C. Wang, B. Urgaonkar, A. Gupta, L. Y. Chen, R. Birke,
and G. Kesidis. Effective capacity modulation as an
explicit control knob for public cloud profitability. In
IEEE ICAC, pages 95–104, 2016.

[27] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey. Bobtail:
Avoiding long tails in the cloud. In NSDI, pages 329–
342, 2013.

[28] M. Yu, A. G. Greenberg, D. A. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling network
performance for multi-tier data center applications. In
NSDI, pages 57–70, 2011.


