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Abstract—Cloud databases achieve high availability by au-
tomatically replicating data on multiple nodes. However, the
overhead caused by the replication process can lead to an increase
in the mean and variance of transaction response times, caus-
ing unforeseen impacts on the offered quality-of-service (QoS).
In this paper, we propose a measurement-driven methodology
to predict the impact of replication on Database-as-a-Service
(DBaaS) environments. Our methodology uses operational data
to parameterize a closed queueing network model of the database
cluster together with a Markov model that abstracts the dynamic
replication process. Experiments on Amazon RDS show that our
methodology predicts response time mean and percentiles with
errors of just 1% and 15% respectively, and under operational
conditions that are significantly different from the ones used for
model parameterization. We show that our modeling approach
surpasses standard modeling methods and illustrate the applica-
bility of our methodology for automated DBaaS provisioning.

I. INTRODUCTION

Cloud based applications and services must provide low
latency and high availability, as increased response times
have been shown to impact the revenue of large service
providers [1]–[3]. In modern data-intensive applications, low
latency at the application level depends heavily on the per-
formance of the database (DB) layer. Database administrators
(DBAs) must manage, upgrade and troubleshoot backend cloud
databases in order to meet stringent service level agreements
(SLAs) that are measured at above the 90th percentile [4]. To
alleviate such tasks, major vendors offer DBaaS (Database-as-
a-Service) platforms such as Amazon Relational Database Ser-
vices (RDS) [5], Microsoft Azure [6], Google Cloud SQL [7]
and Oracle Database Cloud Service [8]. These services provide
cloud-hosted database instances with semi-automated admin-
istrative and monitoring services.

Several methodologies have been proposed to assess
quality-of-service (QoS) in component-based enterprise ap-
plications [9], however when evaluating the data layer these
methods oversimplify the model of the database [10] or ignore
the specific features of DBaaS offerings. In this paper we
address this limitation by proposing an analytical method to
analyze QoS in DBaaS architectures. Specifically, we present
a methodological framework that enables the evaluation of the
impact of replication on DBaaS platforms. Our methodology
relies on queueing network theory and therefore can be inte-
grated within existing methodologies that exploit these models
for QoS assessment, e.g., [11]–[15].

DBaaS providers offer two types of database replication.
Replication for failover and disaster recovery, in which, a
standby database is synchronously updated from the primary
database and serves as a backup. In addition, Amazon RDS
and recently Google SQL (beta version), provide replication
for performance, in which read workloads are offloaded from
the primary database to read-only replicas that are updated
asynchronously. This offers the DBA greater flexibility at the
price of limited control and reduced features, e.g., Amazon
RDS limits the number of replicas per primary database to
five only [16]. In the rest of this paper, we will use the term
replication to refer to replication for performance.

For cloud applications, improved performance and high
availability are achieved through expanding the customer-
facing services by increasing the number of resources where
the application is deployed, known as horizontal scaling. For
cloud databases, this is achieved by replicating the database
on extra nodes in order to sustain the offered QoS during
periods of high demand. The ability of the system to execute
runtime horizontal scaling is known as elasticity [17], [18].
In the database context, elasticity refers to the ability to
expand/retract the database instances with minimal delay and
performance impact [17]. It is characterized by [18] (i) the
time to stability, i.e., resuming normal performance, and (ii)
the impact on performance during expansion/retraction.

Benchmarking studies [17]–[19] have shown that replica-
tion of cloud databases leads to performance instability, which
depends on (a) the addition of a new node to the cluster, (b)
the time to redistribute the data to the new node and (c) the
speed in which nodes are added/removed from the cluster. The
performance impact depends both on the underlying system
resources and on the amount of data to be redistributed within
the cluster [17]. Therefore, DBAs must tradeoff the benefit
of replication against the possible SLA violations during the
replica creation phase. As a result, evaluating the impact of
replication on the database QoS can guide DBAs in decisions
about when to scale the database cluster in and out, and with
how many replicas, in order to guarantee SLAs.

In the performance modeling area, studies have concen-
trated on traditional relational databases using analytical mod-
els, e.g, [10], [20] or simulation-based techniques, e.g. [21],
[22]. For distributed and replicated databases, the main issue
considered by modeling studies is to accurately represent the
routing of queries and communication between different nodes
within the replicated database [23]. Elnikety [24] evaluates



the performance of a replicated database by parameterizing
an analytical model by measuring the performance of a stan-
dalone database. These studies investigated the overall mean
response times and throughputs of replicated databases but do
not consider percentiles, which are essential for DBaaS SLA
guarantees. In addition, they do not explicitly investigate the
impact of replication and replica creation and integration on
the performance of replicated databases.

In this paper, we introduce a methodological framework
that enables the evaluation of the impact that replication has on
QoS for DBaaS platforms. We propose models that explicitly
consider the variable nature of request processing times and the
different system configurations that the DB cluster undergoes.
We show that minimal non-intrusive measurements are enough
to parameterize the model. Further, we are able to determine
the response-time percentiles for the different phases of repli-
cation and overall, such that expected violations of SLAs can
be identified and alleviated. Our modeling results are compared
to a MySQL replicated cluster hosted on Amazon RDS and to
trace-driven simulation.

Currently there is an increased interest in developing
cloud provisioning tools that automate the deployment by
using optimization techniques that rely on underlying mod-
eling formalisms, e.g., SASSY [25], PerOpteryx [26], Sky-
mark [27] and SPACE4Clouds [28]. Optimal provisioning
decisions based on cost, SLA guarantees and workload fluc-
tuations are guided by performance models that evaluate the
expected performance of each scenario. We anticipate that
the models produced from our methodology can be easily
plugged into these tools, extending their applicability to DBaaS
environments.

The main contributions of this paper are:

• We exploit fluid modeling techniques to approximate re-
sponse time percentiles for replicated relational DBaaS
platforms. Our models incorporate the different replication
phases by means of an environment model [29], which
captures the changes in DBaaS service times due to replica
creation and data migration.

• We provide a simple methodology based on client-side
measurements to evaluate the performance of a relational
database cluster hosted on DBaaS platforms. This approach
overcomes the limitations of the restricted access that such
platforms provide (see Section II-A).

• We show that our modeling approach is able to predict the
response time mean and percentiles, which are key in eval-
uating SLAs, for the overall performance of a production-
level database cluster, as well as for each transient stage
during database replication.

• We evaluate our methodology under variable workloads and
dynamic cluster re-configurations, illustrating its ability to
represent the intrinsic performance characteristics of DBaaS
environments.

• We evaluate the impact of replication speed and overhead
on performance stability and its effect on DB cluster per-
formance, as measured by the response time percentiles. In
addition, we illustrate the applicability of our methodology
in guiding replication scale-out decisions in DBaaS environ-
ments.
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Fig. 1: The impact of replication on query response time.

The rest of this paper is organized as follows. Section II
details the motivation behind this work and Section III de-
scribes our methodology for DBaaS evaluation. The models
used to evaluate the replicated database cluster are described in
Section IV. We describe the experimental setup for our running
case study in Section V. Our methodology is validated against
measurements in Section VI. Scaled workloads and dynamic
replication are investigated in Section VII. Trade-offs in DBaaS
scenarios are studied in Section VIII. Conclusions and future
work are discussed in Section IX.

II. MOTIVATING EXAMPLE

DBaaS platforms offer high flexibility and a pay-as-you-
go pricing model that is attractive to DBAs, especially for
applications that face varying workloads. An example is
the Amazon Relational Database Service (RDS) [5], which
provides database administrative services, such as creation,
loading, and replication through publicly available APIs. In
addition, it supports automated read replica creation from a
source database instance hosted on Amazon RDS. The source
database is the master that serves read and write requests,
while the replica (slave) can only serve read requests. During
replica creation, Amazon RDS takes a snapshot of the source
database (the master), which is used to create a replica node
that is kept up-to-date asynchronously without user interven-
tion [16]. In the rest of this paper, we refer to read replicas
simply as replica.

During the replica creation and data migration process the
performance of queries on the database can be affected by the
backup and migration operations, potentially leading to SLA
violations. For example, Amazon RDS estimates a one minute
I/O suspension on the master DB as the database snapshot
is created for replication [16]. Further, DBaaS offerings have
been shown to exhibit high variability in query response
times for single-instance relational databases [30]. For DBAs,
this translates to a trade-off between adding a new replica
to achieve better performance and the probability of SLA
violations during replica creation.

To illustrate this impact, using Amazon RDS (see envi-
ronment description in Section V), we ran queries against the
master database and then initiated a replica creation from the
master DB. Figure 1(a) shows the actual query response times
before, during, and after replica creation. During the replica
creation phase, the mean query response time increases by
over 20% from 0.035s to 0.044s and the standard deviation
of the response time increases almost 10 fold from 0.018s
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to 0.14s. Such scenarios are difficult for DBAs to evaluate,
especially as the degradation in performance happens at a
time when the overall system is experiencing a high load,
which is in fact the reason to expand the database cluster. In
such scenarios, standard queueing modeling approaches [31]
fail to represent the variability of the database performance,
especially when dealing with SLAs defined on the response-
time percentiles. One source of error is that standard methods
assume exponentially-distributed processing times, a common
assumption that may not capture well the observed distribution
of the processing times. Instead, one advantage of our method-
ology is to consider more general processing times. Figure 1(b)
illustrates this disparity by comparing the prediction errors of
the exponential assumption and the general processing times
we apply in this paper. We further illustrate this and other
sources of error in Section VI-B.

A. Modeling Challenges

DBaaS providers have automated fundamental database
administrative services, however, this in turn has reduced
DBA control on many of the performance aspects of the
database [30], especially since service providers do not expose
details about collocation, physical resources and data place-
ment. For example, limiting replicas to read-only functionality
on Amazon RDS prevents the collection of query-level statis-
tical data from these replicas.1 Thus the DBA must rely on
client-side performance statistics, or on performance measure-
ments from the master database to infer the performance of the
replicas. In addition, the DBaaS performance depends on the
number of active replicas in the cluster, whether the master DB
is currently participating in the creation of a new replica, and
the frequency of addition/deletion of replicas from the cluster.
Furthermore, reporting the percentiles of performance metrics,
in addition to averages, is important for DBAs to accurately
determine the impact that a given replication policy has on the
QoS perceived by the users.

To cope with these requirements, in this paper we propose
a methodology that explicitly models the dynamic nature of
replication in DBaaS environments and its impact on the
system performance, and provides response-time percentiles
for evaluation. To achieve this, we exploit our recent exten-
sion [32] of the fluid queueing network model introduced
in [14], which incorporates an environment model. The en-
vironment model is composed of a number of stages, each
representing a possible configuration or condition of a system.
This concept was tested in [32] to model web-based appli-
cations. In this paper, we exploit the environment model for
two main purposes: (i) to model how the number of active
replicas changes dynamically, increasing and decreasing as part
of the operation of the database cluster; and (ii) to capture
when the DB master is engaged in a replica creation process,
reducing its ability to process incoming queries. We focus
on these conditions as they can have a large impact on the
cluster performance. In addition, we use Coxian distributions
as in [32] to capture the processing times observed at the
DB cluster, and we show that this feature is key to obtain
accurate estimations of the response-time percentiles, which

1At the time of our experiments query-level performance metric collection
was unsupported for MySQL read replicas.
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Fig. 2: State diagram of the DBaaS evaluation methodology.

are commonly used to define SLAs. Section IV describes the
model in detail.

III. METHODOLOGY

The general method we propose is to approximate DBaaS
service performance via client-side measurements. Here, we
use the term client to refer to the the source of the workload
observed at the database tier. Specifically, we use request
response times observed at the client to estimate DBaaS service
times. This method simplifies the collection of measurements
for DBAs. Our methodology assumes the following character-
istics of DBaaS services as currently provided by commercial
and public providers [5]–[7]: (i) database server VMs/instances
are by default homogeneous; (ii) DBaaS inter-cluster perfor-
mance metrics are either not accessible or difficult to obtain.
In addition, in our case study the client application is hosted
on the service provider’s IaaS/PaaS infrastructure, which is
a common choice that reduces the communication latency
between the application tiers.

To model the DB cluster we explicitly consider the changes
that the system undergoes in its configuration (replica creation,
deletion). We therefore put forward a methodology that collects
data for each of these stages and uses it to parameterize
a model that computes overall and per stage performance
metrics. The steps of our methodology are depicted in Figure 2.
Below we give an overview of each step with details provided
in the following sections.

1) Measuring the targeted DB cluster: For a given database
cluster, run a workload against the master database and initiate
a sequence of replica creations/deletions. Collect a client-side
trace of request submission times and response times during
the execution of the experiment. In addition, an experiment
log is kept for all steps in the run, e.g., replica creation start,
end, etc. An example experimental case study is detailed in
Section V. This step can be completed once for a set of
different workloads or by reusing historical data. Sections VI
and VII provide additional details.

2) Estimating model parameters: From the request trace
we calculate request mean service times and variance for each
stage. From the service time mean and variance, we obtain
service time distributions. We calculate the mean time the
system spends in each stage from the experiment log. This
is detailed in Section IV-C.
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Fig. 3: Queueing network model of the replicated database

3) Analyzing the DB cluster: The processing time distri-
butions, mean time spent in each stage, and the number of
CPU cores for each DB server are provided as input to the
database cluster model introduced in Section IV-A. Solving
the model gives the overall and per stage mean response
times, throughputs and response time percentiles. The transient
overhead caused by the creation of replicas is considered
via the environment model discussed in Section IV-B. If the
predicted performance fulfills the required SLAs, the DBA
can apply the configuration to the cluster. If not, the model
is modified to represent the scale out of the DB cluster,
especially for those stages where SLA violations are identified.
Model parameters may need to be re-estimated for the new
configuration, as decribed in Section VII, and the model is
again analyzed to verify compliance with the SLAs.

As the measurements needed to parameterize the database
replication model are not DBaaS specific the methodology
is general enough to apply to any DBaaS framework. We
illustrate in Section VIII how our approach can be utilized
in automated cloud provisioning tools.

IV. THE DATABASE REPLICATION MODEL

A. The Database Cluster Model

We model a DBaaS environment as a closed queueing net-
work like the one shown in Figure 3. The network is composed
of M multi-server stations that represent the database servers.
In addition, a delay station is used to model the think time of
users submitting requests. Figure 3 illustrates a database cluster
with M = 3 database servers: one master and two replicas.
A total of N users submit requests with an exponentially
distributed think time. Requests are distributed equally to all
servers in the cluster.

To model fairly general processing times, we rely on
Coxian distributions. A Coxian distribution can be interpreted
as a sequence of m exponential phases, where all requests
start service in phase 1. In phase i a request spends an
exponentially-distributed time with rate µi, after which it can
either complete service, with probability φi, or continue to the
next phase, with probability 1−φi. After the last phase the
request completes service with probability 1. To illustrate the
methodology we focus on read requests that belong to a single
class, though this can be easily generalized to many classes
representing different types of reads and writes. To analyze this
model, we follow [32] in using a fluid approximation based
on a set of ordinary differential equations, which provides a
deterministic approximation to the expected sample path of the
system state. Although approximate, the fluid model has the
advantage of avoiding the state-space explosion encountered
in Markovian models.
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Fig. 4: Example environment model for the replicated database

B. The Environment Model

We introduce the environment model to capture that (i) the
number of active replicas changes dynamically, increasing and
decreasing as part of the operation of the database cluster; and
that (ii) the DB master can engage in a replica creation process,
reducing its ability to process incoming queries. Assuming a
maximum of M−1 replicas, the environment model consists
of 2M−1 stages, one for each database cluster configuration.
An example for the case with two replicas is illustrated in
Figure 4. Here, in stage 1 only the master is running, whereas
in stage 2 a replica is being created while the master continues
serving requests. When the replica is ready, the system moves
to stage 3, where both master and replica are serving requests.
If during this stage the replica is deleted, the system goes back
to stage 1. In a similar manner, for any 1≤j≤M − 1, stage
2j refers to a stage with j database servers accepting requests
with a replica being created, while in stage 2j+1 the replica
has been created, thus a total of j+1 servers are up. Notice that
this model can be easily generalized to consider the concurrent
creation and deletion of multiple replicas. This can be achieved
by adding links and a stage between the relevant stages. For
instance, in Figure 4 we can add links between stages 1 and
5, and an intermediate stage, to allow for the creation/deletion
of 2 replicas simultaneously.

A key feature of the environment model is to include
separate stages for the periods during which replicas are
created. The objective of these stages is to alter the query
processing times at the master to reflect that the master must
devote resources for replica creation, which impacts the request
processing times. Also, we modify the routing probabilities
whenever a new replica becomes available to allocate incoming
requests to the new replica. We set pi to be the probability that
a request is routed to DB server i, such that in stages 1 and
2, where only the master is up, we set p1 = 1 to route all
the traffic to the master, letting pi = 0 for 1 < i ≤ M . In
stages 2j − 1 and 2j, where a total of j servers are up, for
2 ≤ j ≤M , we set

pi =

{
1/j, i = 1, . . . , j,

0, i = j + 1, . . . ,M,

such that the traffic is uniformly distributed among the avail-
able servers. Although we assume uniform routing, more
general routing schemes can be considered.

The database cluster changes its state continually, adapting
to the incoming workload, thus adding and deleting replicas
at run-time. These dynamics are captured by the environment
model by means of a continuous-time Markov chain with as
many states as database replication stages. Thus the time spent
in stage j is exponentially distributed with mean wj , and after
a visit to stage j, the system jumps to another stage k with
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Fig. 5: Example of estimation with the BL method

probability qjk. In the next section, we describe how the model
parameters are obtained from measurements.

C. Model parameterization

As stated in Section II, server-side performance moni-
toring is challenging in DBaaS environments. Our modeling
methodology mitigates this scenario by collecting client-side
performance statistics, as described in Section V. Since we
collect submission timestamps and response times for all
clients we can extract service-time samples with the baseline
(BL) estimation method introduced in [33], which we illustrate
in Figure 5. For the two queries in the figure we collect the
submission timestamps t1 and t2, and the response times t3−t1
and t4 − t2. If these two queries execute on the same CPU
core, they must share the CPU core during the period [t2, t3].
Thus the service time for query 1 is (t2 − t1) + (t3 − t2)/2
since during the period [t2, t3] it only uses half of the CPU
core processing capacity. In other words, the service time is the
time that the query would require to execute if it was processed
on its own without sharing CPU resources with other queries.
Following a similar analysis for any number of queries and
cores, the BL method determines the effective processing time
for each query in the trace. Using these service-time samples
we obtain their mean and variance, which we then use to es-
timate a Coxian representation of the service time distribution
by means of standard moment-matching methods [34]. These
estimates represent the service times of the M database servers
in Figure 3.

As the service times can differ among the replication
stages, especially due to the replication overhead, we estimate
the service time distribution separately for each replication
stage, making use of the experiment event log described in
Section V. Further, due to the homogeneous configurations of
the DB cluster, in which replicas are created with the same
resources as the master, we assume replica service demands
are equal to those of the master for each stage in which both
are serving requests and no replica is being created. For the
master server we also estimate its service time when a replica
is being created, which is used for this server only during the
corresponding stage. To estimate the holding times in each
stage in the environment model of Figure 4, we also use the
experiment event log, which records the timestamps in which
the database cluster adds and removes replicas. We use these
timestamps to obtain the duration of all visits to each stage j,
which we average to estimate the mean holding time wj for
each stage j. From this log we can also determine the number
of times that a transition from each stage to any other stage
was observed. We use these counts to estimate the transition
probabilities between stages, completing the description of the
environment model.

D. The reset matrix

A key component in defining the environment model is the
reset matrix. When the system transitions from one stage in the
environment model to another stage, its state must be modified
in order to account for the new configuration. In particular,
when the system is in stage 2j−1, with j > 1 servers running,
and one of the servers is removed, the new system state must
be such that all the requests in progress in the server being
removed are re-allocated to the other servers. This re-allocation
is achieved by means of the reset matrix.

The system state is described by the number of requests
executing in each server and in each phase of execution,
according to the Coxian service model. We introduce the reset
matrix Rs,t associated to a transition from stage s to stage t,
for 1 ≤ s, t ≤ 2M − 1, such that the entries of Rs,t hold the
probability that the system jumps from each state in stage s
to any state in a different stage t. We can partition the matrix
Rs,t into blocks Ri,k

s,t that correspond to transitions from server
i to server k. We can then write

Rs,t =


R0,0

s,t R0,1
s,t · · · R0,M

s,t

R1,0
s,t R0,1

s,t · · · R1,M
s,t

...
...

. . .
...

RM,0
s,t RM,1

s,t · · · RM,M
s,t

 .
The (j1, j2) entry of the Ri,k

s,t matrix is the probability that
a request in execution phase j1 in server i is re-allocated to
execution phase j2 in server k when the system transitions
from stage s to stage t. Now, assume the system is in stage
2j − 1 with j > 1 servers in operation. When one of these j
servers is removed we assume, without lost of generality, that
the j-th server is the one being brought down, such that the
associated reset matrix is

Ri,k
2j−1,2j−3 =


I, i < j, k = i,

ee′1/(j − 1), i = j, k = 1, . . . , j − 1,

0, otherwise.
The first condition indicates that for any server i different
from the server going down (j), the requests simply continue
execution in that server without any modification. In contrast,
for the server going down (j), its requests are redistributed to
the other servers, which correspond to servers 1 to j−1. This
reallocation is captured by the matrix ee′1, where e is a vector
of ones, e1 is a vector with a one in its first entry and zero
elsewhere, and ′ stands for the matrix transpose. Thus, ee′1
is a matrix with a first column of ones and zero elsewhere,
so that a request in server j in any execution phase re-starts
service in another server in the first phase, as all Coxian
service times start in the first phase. Further, the requests in
the server going down are uniformly distributed across the
j−1 remaining servers, which is captured by dividing the
ee′1 matrix by the factor (j−1). Stage transitions for replica
creation can be described similarly, but are simpler since the
requests can continue execution in the server in which they are
allocated and the new server starts empty.

V. EVALUATION ENVIRONMENT OVERVIEW

In this section, we describe the software and hardware
configurations used in our running case study. We imported
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Fig. 6: The Amazon RDS evaluation environment.

TABLE I: Experimental Setup Specifications.
VM Specifications

DB Instance
db.m3.large
2 vCPU 7.5 GiB RAM
MySQL version 5.6

Clients VM
m3.large
Ubuntu Server 14.04
client mean think time = 0.2s

HAProxy balance leastconn

a set of production-level data from an enterprise application2

onto an Amazon RDS instance hosting MySQL version 5.6,
which was the default version provided by Amazon RDS at the
time. Amazon RDS provides MySQL replication by managing
the creation and configuration of MySQL read replicas. The
replicas can only serve read queries, while the write queries
must be routed to the master. The MySQL DB used the default
configuration provided by Amazon.

As depicted in Figure 6, the workload for the DB cluster
is generated from a set of emulated clients, running on VMs
deployed on Amazon EC2 [35]. HAProxy [36], an open source
load balancer, was installed on the EC2 instance to connect the
clients with the MySQL instance(s). The system specification
is provided in Table I. The HAProxy load balancer accepts
connections from the emulated clients and allocates them, to
the master and replicas in the MySQL RDS cluster. During
the duration of each experiment, each emulated client loops
through the following steps: opens a MySQL connection
through HAProxy, sends a read query and waits until receiving
the result, closes the connection and waits for an exponentially-
distributed think time. We close the connection each time and
reconnect to avoid saturating the MySQL connection pool with
idle connections. We collect request response times at the EC2
client VM, which include (dis)connection times.

To evaluate the effect of replication on performance, we
wrote a script that uses the publicly available Amazon RDS
APIs and runs on an EC2 VM to automate the creation/deletion
of read replicas during the execution of the experiments and to
reconfigure HAProxy each time the DB cluster configuration
changed. A log of the experiment was produced to record the
time points in which replicas were created/deleted and the
availability of the master and replicas during the replication
process.

Using the setup described above we conducted experiments
with different configurations and number of clients. Since
replication is used to handle changes in the workload, in the
experiments we consider two scenarios: (i) unscaled, where

2Due to a non-disclosure agreement we are unable to provide details of
the application, but it has a standard three-tier architecture with presentation,
application and data tiers.
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Fig. 7: N = 90 - Response time CDF for each stage for the
uM1R experiment vs. empirical CDF.

the workload (number of users) remains unchanged during the
duration of the experiment; (ii) scaled, where the workload
is increased/decreased proportionally to the number of active
replicas. In addition, we consider two modes of evolution of the
cluster configuration: (i) deterministic, where the configuration
changes are predefined, i.e., the times of addition/deletion
of replicas are defined at the beginning of the experiment;
(ii) probabilistic, where the configuration changes randomly,
adding/deleting replicas so as to reflect online adaptations. The
details of the experimental setups are in Table II.

VI. VALIDATION

In this section we evaluate the ability of the proposed model
to predict response times similar to those observed in the
experiments described in Section V. We also investigate the
model sensitivity to the assumptions described in Section IV.

A. Master and One Replica

1) Fixed Workload: To validate the replication model we
compare the results of the model against the experimental
results of the uM1R setup. This scenario has the first three
stages in Figure 4 and we parameterize the model from the
measurements of the uM1R setup with 90 clients. From exper-
imentation, this workload maintains the mean server utilization
at 80% when only the master DB is running. Figure 7 shows
the cumulative distribution function (CDF) of the response
time observed (trace) and the one predicted by the model.
Figure 7(a) shows the response time CDF for the first stage of
the system, where only the master is running; Figure 7(b) for
stage 2 during the replication phase; and Figure 7(c) for stage
3 after replica creation; and Figure 7(d) illustrates the overall
response-time CDF.

For all cases, we observe that the predicted response time
CDFs approximate well the observed response time CDFs for
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TABLE II: Description of Experiments.
Experiment Description Duration

unscaled Master and 1 Replica (uM1R)
(1) fixed number of clients run against the master DB for 5 min

30 min(2) create a read replica
(3) after the replica is ready to accept connections, continue for another 10 min.

scaled Master and 1 Replica (sM1R)
(1) conduct the uM1R experiment

30 min
(2) when the replica is ready, scale the workload proportional to the server capacity

unscaled Master and 2 Replicas (uM2R)

(1) run a fixed number of clients against the master DB for 5 min

50 min
(2) create a read replica
(3) after the replica is ready to accept connections, continue for 5 min
(4) create the second replica from the master

scaled Master and 2 Replicas (sM2R)
(1) conduct the uM2R experiment

50 min
(2) each time a replica is ready, scale the workload proportional to the available DB servers

unscaled probabilistic Master and 2 Replicas (upM2R) (1) run a fixed number of clients and create and delete up to 2 replicas multiple times 3 hours

scaled probabilistic Master and 2 Replicas (spM2R)
(1) conduct the upM2R experiment

3 hours
(2) scale the workload in and out proportionally to the number of available DB servers

all stages and for the overall response times. While the errors
for the mean response time are at most 1%, Table III (column
90) shows that the mean relative error in the CDF, measured at
every percentile, is at most 6%, and Tables IV and V (column
90) show the relative error for the 95th and 99th percentiles,
which are at most 8%. We observe that the model is able to
predict not only the average metrics but also the dispersion of
the response times, which change depending on the number of
DB servers available.

As our model distinctly incorporates the performance of
each stage of the system, we are able to observe key changes
in the response-time distributions across the different stages,
observations that are backed by the measurements. In partic-
ular, the response times have a minimum value, or a lower
bound, in each stage, but the value of this bound depends on
the stage, and particularly on the number of active replicas.
While Figures 7(a) and (b) display a similar lower bound, this
bound increases in Figure 7 (c), where the DB replica becomes
available. When evaluating the overall response times, as
depicted in Figure 7 (d), this effect is masked, since the overall
response time CDF combines all three stages. This effect is
also visible by comparing the sigmoid shape of the CDF in
stage 1 against that in stage 3, which is closer to a step
function. The proposed model is therefore able to reflect these
detailed changes in the response-time distribution, which are
also visible in the measurements, as the system configuration
changes.

2) Different Workloads: We now consider a more challeng-
ing evaluation by using the processing times estimated when
the number of clients is N=90 to determine the response times
when the number of clients N varies between 70 and 170.
The overall response time CDF for N = 70, 110, 130, 150 is
depicted in Figure 8, where we observe an excellent match
between the empirical distribution and the model results. The
model captures how the increase in the number of clients shifts
the response times to the right and at the same time flattens
the distribution. At N=70 the response times are highly
concentrated around 0.5 s, while at N=150 most response
times are between 1 and 2 s, with more pronounced left and
right tails. Figure 9 illustrates the response time CDF for the
specific case N=130 for each stage and overall, comparing
the predicted CDF obtained with the N=90 measurements
against the empirical CDF. We observe the excellent match
between the predicted and measured CDFs, with the model
clearly capturing the effect of the system configuration as the
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(b) N = 110
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(c) N = 130
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(d) N = 150

Fig. 8: Response time CDF for N = 70, 110, 130,& 150 based
on N = 90 observations

number of replicas increases, which clearly affects not just the
mean but the distribution as a whole. The ability of the model
to capture these changes in the distribution is key to determine
possible violations in SLAs specified as percentiles.

In more detail, the predictions errors for the mean re-
sponse time for each stage and overall are at most 1% for
all workloads. Table III shows the mean predictions errors
for the response time percentiles. The model gives excellent
prediction for all workloads and stages with relatively less
accuracy for N = 170 for stage 3 with an error of 16%.
Tables IV and Table V show the predictions errors for the
95th and 99th percentile, respectively. We observe similar
accuracy for these percentiles as for the overall CDF. However,
for N=70 we observe a decrease in accuracy for the 99th

percentile prediction. For N=170, the model underestimates
the 95th and 99th percentiles, especially for stage 3. This
can be a result of the increased variance in response times
when N=170 in comparison to that when N = 90 which
is not captured by the model. We will examine further the
effect of the processing time variance when considering scaled
workloads in Section VII. In contrast, the overall 95th and
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(d) Overall

Fig. 9: Response time CDF for N = 130 based on N = 90
observations

TABLE III: Mean Prediction Errors in Response Time CDF
Percentiles(%) based on N = 90 for N = 70− 170

N 70 90 110 130 150 170
Stage 1 10 6 3 3 6 7
Stage 2 12 6 5 5 6 8
Stage 3 0 1 2 3 3 16
Overall 6 3 3 3 3 4

99th response time percentiles prediction is accurate for all
workloads. In general, the relative errors in the response-
time percentiles are small, even though the processing-time
distribution is approximated by means of two moments only.

B. Sensitivity Analysis

We now evaluate the sensitivity of our modeling approach
to the modeling assumptions of our methodology. In partic-
ular, we evaluate the accuracy of the model under simpler
processing time distributions and under processing times that
average out the effect of the replication stages. In both cases,
we utilize the same environment model as in the previous
section, as removing the environment model would produce

TABLE IV: Prediction Errors in 95th Response Time Per-
centile(%) based on N = 90 for N = 70− 170

N 70 90 110 130 150 170
Stage 1 0 6 0 6 12 13
Stage 2 6 6 2 7 13 16
Stage 3 0 1 2 7 7 33
Overall 13 1 2 5 7 1

TABLE V: Prediction Errors in 99th Response Time Per-
centile(%) based on N = 90 for N = 70− 170

N 70 90 110 130 150 170
Stage 1 18 8 0 5 12 14
Stage 2 15 8 3 8 16 19
Stage 3 1 1 4 6 30 46
Overall 16 7 2 7 9 2

0 2 4 6 8
time [s]

0

0.2

0.4

0.6

0.8

1

R
es

po
ns

e 
tim

e 
C

D
F

model
trace

(a) Stage 1

0 2 4 6 8
time [s]

0

0.2

0.4

0.6

0.8

1

R
es

po
ns

e 
tim

e 
C

D
F

model
trace

(b) Overall

Fig. 10: Exponential service times - N = 90 - Response time
CDF for the uM1R experiment.

a simple closed queueing model that can only represent the
overall performance of the system.

a) Exponential service times: We first consider a model
where the processing times follow the standard exponential
distribution rather than the Coxian distribution described in
Section IV. The exponential distribution is parameterized by
the mean processing time obtained with the method described
in Section IV, but ignoring higher moments. As before, we
use the data for the uM1R experiment with N=90 clients to
obtain the response time distribution for the same and other
client numbers. The exponential model produces results that
accurately match the mean response time, with errors of up to
1%. However, the errors in the response time percentiles are
very large, e.g., the mean error in the response time percentiles
is 49% for stage 1, rising up to 50% and 62% for stages 2 and
3, respectively. The mean error overall is 52%. For the 95th

percentile, the case is more extreme, with the error being 89%,
94% and 151% for stages 1, 2 and 3, respectively. The overall
error for the 95th percentile is 105%.

Figure 10 depicts the response-time CDF observed against
the one obtained with the exponential model. Clearly, the
response time distribution predicted by the model with ex-
ponential processing times is very far from the measurements,
specifically the tail is much longer, giving rise to very large
errors for the high percentiles. This holds for each stage sep-
arately and for the overall metrics. These results highlight the
importance of considering Coxian processing times to obtain
accurate estimations of the response-time percentiles. In fact,
while the mean response time in a processor-sharing queue is
known to be insensitive to the processing time distribution, the
response time distribution is not, yet this distribution is central
for SLA evaluation. This also rules out the use of standard
methods that focus on the mean response time only.

b) Average service times: We now consider an alterna-
tive model where the service times are not characterized for
each stage. Instead, we obtain a single service-time distribution
from the overall statistics (mean and variance), which is used
in every stage. Notice that we keep the environment model in
order to modify the number of active replicas in each stage.
As a result, the only difference across stages is in the number
of active DB servers. Our objective is to test the relevance of
considering different service-time distributions for each stage
as done in the proposed methodology. This model results in
very large errors for the mean response time, in the 30− 60%
range, when the stages are considered separately. The errors are
much smaller when considering the overall system, on average
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15%, as the overall modeling of the service times is better
suited to address the overall system performance rather than
each stage separately. However, this error is much larger than
the 1% error of the proposed model. Further, the errors for
the 99th response-time percentile obtained with the modified
model average between 56% − 89% for all stages and 78%
overall, which are clearly much larger that the errors produced
by the proposed model.

We have shown that the power of our modeling approach
depends on the environment model that differentiates the ser-
vice times observed in each stage, and hence simply averaging
the service times produces incorrect results. In addition, captur-
ing the service time distribution, via a Coxian representation,
rather than just the mean as with with a standard exponential
distribution, is essential in obtaining accurate results for the
response-time percentiles.

VII. SCALED AND DYNAMIC REPLICATION

We now consider the scenarios with scaled workloads and
dynamic replication, as described in Table II.

A. Scaled sM1R

We consider the sM1R experiment with N=90 clients, in
which the number of clients is doubled when the replica is
ready to accept requests. When parameterizing the model from
the measurements of the sM1R experiment the model gave
excellent accuracy for the response time mean and percentiles.
As this experiment differs from the uM1R experiment only by
the doubling of the workload during stage 3, we modified the
model by parameterizing it with the uM1R data, and doubled
the workload when the system entered stage 3.

Due to the scaling of the workload, the variability observed
in stage 3 of sM1R is much larger than the one observed in
the same stage of uM1R, where the number of users is not
scaled in the last stage. We note that the workload in stage
3 of sM1R (a total of 180 users) divided equally between the
master and the replica is similar to the workload on the master
alone in stage 1 (90 users) of the uM1R. To account for this
in the model, we use the second moment observed in the first
stage of the uM1R setup to parameterize the service times in
all stages when modeling the sM1R setup. Thus, although we
change the mean demand in each stage as observed in the
uM1R setup, we keep the same variance as the one observed
in the first stage of uM1R.

From Table VI, we observe that the errors for stage 3 are
similar to those for the other stages in both the mean and the
percentiles, with similar accuracy to the results presented in
the previous section. Figure 11 compares the response time
CDF predicted by the modified model against the traces of
the sM1R experiment. We observe that the accuracy of the
performance prediction depends on the accurate representation
of the variability in the service demands as the second moment
appears to depend heavily on the ratio of the number of users
to the number of resources.

For comparison we show in Figure 12 the response time
CDF prediction obtained when we use the variance observed
in each phase in uM1R for the corresponding phase in sM1R.
Figure 12(a) shows the prominent difference for stage 3, as the

TABLE VI: Errors (%) in response time prediction for sM1R
based on uM1R

mean RT RT CDF RT95 RT99
Stage 1 < 1 4.2 3.1 5.7
Stage 2 1 7.2 < 1 2.2
Stage 3 < 1 3.2 1 3.3
Overall < 1 2.9 3 1.1
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Fig. 11: Response time CDF for sM1R N = 90 based on
uM1R N = 90 observations

predicted response times are much more concentrated than the
measurements. Figure 12(b) shows how this affects the overall
predictions as well. Therefore, to accurately parameterize the
model the second moment plays an important role and should
be set according to the ratio between the number of users and
the number of active servers in a given stage. To this end, it
is sufficient to measure the variability for a range of diverse
workloads on a single database instance, then, for predicting a
certain scenario we compute the ratio of expected number of
users to active DB servers, and obtain the appropriate variance
by interpolating the closest values among the observations
collected.

B. Dynamic Replication: Master and up to Two Replicas

When experimenting with clusters with 2 replicas we
observed the expected decrease in mean response times as the
number of replicas increased. However, due to MySQL syn-
chronization overhead between the master and replicas [37],
the decrease seemed small and far from proportional to the
number of replicas. As we perform client-side measurements
that avoid directly measuring the replication overhead, to
predict the performance of clusters of size n we require client-
side measurements from a cluster of the same size.

In the following, we demonstrate the ability of the model
to predict the performance metrics under dynamic replication,
i.e., the cluster dynamically adds and removes replicas, from
measurements from a static experiment. We show results for
up to 2 replicas, but the methodology can be easily applied
to any number of replicas, including the 5 replica limit on
Amazon RDS.

1) Unscaled upM2R: Here we parameterize the model with
data from the uM2R experiment, where replicas are spawned
deterministically, to determine the response times in the con-
ditions of the upM2R experiment, where up to 2 replicas are
added and removed dynamically. We also use the mean times
the cluster was observed in each stage in the upM2R setup,
as this information is specific for each particular scenario and
cannot be extrapolated. With these parameters we obtain the
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Fig. 12: Response time CDF for sM1R N = 90 based on
uM1R N = 90 observations - without variance correction

TABLE VII: Errors (%) in response time prediction for upM2R
based on uM2R

mean RT RT CDF RT95 RT99
Stage 1 2.6 5.4 2.5 1.7
Stage 2 < 1 4.4 4.7 8.8
Stage 3 1.2 1.5 3.2 5.3
Stage 4 < 1 1.8 2.4 2.4
Stage 5 < 1 2.4 6.5 9.5
Overall < 1 5.1 3.5 8.4

response time CDF per stage and overall and compare them
against the observations from the upM2R case with N=90
clients. The model consistently matches the observed response
time distribution for all the system stages. Also, the use of
the mean times in each stage allows the model to obtain an
accurate picture of the overall response times. The relative
errors in response-time mean and percentiles are summarized
in Table VII, where we observe errors always below 10% even
for the highest percentiles.

2) Scaled spM2R: We now conduct a similar experiment
for the scaled workload setup. We use the data from the uM2R
experiment, with 90 clients, to estimate the processing time
distribution, and use these parameters to execute the model
in the conditions of the spM2R experiment. Together with
the demands, we use the mean times spent in each stage
as observed in the dynamic setup spM2R to parameterize
the environment model. As the uM2R setup has an unscaled
workload, we use the service time variance observed in the
first stage of uM2R to parameterize the service times for all
stages of spM2R, preserving the resources-to-users ratio, as
all stages of spM2R have 90 users per resource. As depicted
in Table VIII, we observe an very good match between the
trace and the model, both for each stage and overall. Also,
we observe a larger error, 9.7%, in the mean response time,
although the errors for the percentiles are similar to the cases
considered before. We note that the error for stage 5 for the
99-th percentile is 20.7%, which can be attributed to the high
variance in stage 5.

TABLE VIII: Errors (%) in response time prediction for
spM2R based on uM2R

mean RT RT CDF RT95 RT99
Stage 1 3.3 4.6 3.9 5.9
Stage 2 < 1 4.9 4.7 6.4
Stage 3 2.4 4.6 1.8 2.0
Stage 4 < 1 7.8 5.3 12.1
Stage 5 < 1 6.3 13.5 20.7
Overall 9.7 14.2 8.4 16.4

VIII. REPLICATION TRADE-OFFS

In this section, we evaluate the impact of replication
overhead and speed on the response times and demonstrate
the applicability of our methodology in automating scaling
decisions for DBaaS replication.

A. The Effect of Replication Overhead

As illustrated in Section II, replication can significantly
increase the transaction processing time due to the overhead
posed on the master DB server during the replica creation
phase. Here we make use of the proposed model to determine
the impact that different levels of overhead can have on the
response times offered by the database. We parameterize the
model with the uM1R experimental dataset with N=70 clients,
but modify the mean transaction service times during stage 2,
which is the stage when the replica is being spawned, and
the master is the only server effectively processing requests.
The mean transaction service time during stage 2 is set as
x% more than the mean transaction service time during stage
1. We consider cases up to x = 20, in agreement with the
observations in Section II. We note that the system spends
only 5% of the total execution time in the replication phase.

Figure 13 illustrates the increase in the response times,
during the replication phase and overall, as a function of
the overhead in the replication stage, comparing against the
baseline without overhead. Figure 13(a) shows that the over-
head affects both the mean and high percentiles, and that,
when considering the replication stage on its own, the increase
is larger than the overhead introduced. For example, when
the overhead is 15%, the mean response time during the
replication phase increases by 21%, while the high response
time percentiles increase by around 19%.

Figure 13(b) considers the effect on the overall response
times. The 90th and 95th percentiles present the largest increase,
which is over 3% when the overhead is 20%, while the 99th

percentile increases by 2.3% and the mean by 1.4%. In this
case the impact of the replication overhead on the response
time percentiles is more apparent than on the mean, which
reflects that the requests with the longest response times,
overall, are those processed during the replication phase, which
are therefore more susceptible to the replication overhead.
Also, an increase of 3% in the 90th percentile is actually quite
significant when we consider that stage 2 represents less than
5% of a cycle made of 3 stages. Validation of these results
against trace-drive simulations, shown in Table IX, show errors
for the mean of around 1% and for the high percentiles below
16%. Therefore, the replication overhead has a large impact on
the response times during the replication phase, which can lead
to SLA violations during this period. Moreover, this overhead
can impact the overall response times, particularly the tail
percentiles, harming the requests that experience the longest
response times.

B. The Effect of Replication Speed

Depending on a number factors, e.g., network speed, DB
master image size, or log file size, the replica creation phase
can take a substantial amount of time. While replicas can come
up and down, we are interested in the proportion of time that
the system is under replication, as this is the period when the
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TABLE IX: Error in overall response times: model prediction
vs. trace-driven simulation

Overhead (%) mean RT (%) RT90 (%) RT95 (%) RT99 (%)
0 1.2 15.8 12.2 11.1
5 1.2 15.4 11.9 11.3

10 1.1 14.7 11.3 11.2
15 1.0 14.1 10.6 10.7
20 0.9 13.5 9.9 10.2
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Fig. 13: Increase in response times as overhead increases

DB master server suffers additional pressure. In the previous
section, the replication phase was approximately 5% of the
total execution time. We increase the state holding time for
stage 2 such that the total time that the database is in the
replication phase is 10% and 20% of the overall execution
time. We evaluate the effect of the replication time as we vary
the replication overhead up to 20%, as in the previous section.
We focus on the overall metrics since the metrics during the
replication stage are not affected by the duration of this stage.

Figures 14(a)-(b) depict the percentage increase in overall
mean response time mean, 90th, 95th and 99th percentiles,
when the system replicates 10% and 20% of time, respectively,
compared to the base case without overhead. As in the previous
section, we observe that the effect of the overhead during
replication is higher for the high percentiles than for the mean.
However, the impact on the mean clearly increases as the
replication time increases. For instance, in the previous section
the increase in the mean response time under a 20% overhead
was just 1.4%, while here it is 2.8% and 5.7% when the
replication times are 10% and 20%, respectively. Validation
of these scenarios against trace-driven simulations show errors
similar to those in Table IX, we have omitted the numbers due
to space limitations. We also observe that the impact on the
high percentiles is more pronounced as the replication time
increases, and, of the three percentiles considered, the highest
impact is on the 90th. Thus, while under a small replication
time the impact of replication is felt only by the users that
face the highest response times, for large replication times this
impact becomes more widespread, affecting more significantly
the average metrics. The effect of replication in this case thus
moves from the tail down to the main body of the response-
time distribution, although the highest percentiles are still the
ones most affected by the replication overhead.

C. Guiding Scaling Decisions

Our methodology can be easily plugged into current au-
tomated cloud provisioning tools, as the inputs to the models
are easily available to these tools. To illustrate this, consider
a DBaaS cluster where provisioning decisions are made every
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Fig. 14: Effect of replication overhead and time
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(a) Scaling scenario 1
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(b) Scaling scenario 2

Fig. 15: Evaluating scaling decisions based on response time
predictions

20 minutes. To this end a forecast of the expected workload,
in intervals of 20 minutes, is maintained, e.g., from historical
data. The provisioning tool then evaluates possible scenarios
on whether and when to create or delete replicas.

Let us consider an initial state of the cluster with the master
server only, and a forecast of {90, 150, 140, 180, 110, 130}
expected users in the next six 20 minute intervals of the fore-
casting horizon. The provisioning tool will compare between
different scaling scenarios to achieve the best performance for
the forecast workload. As an example, consider 2 possible
scaling scenarios: scenario (1) {1, 2, 2, 3, 2, 2}, in which the
cluster is scaled out to 2 replicas in the second interval,
then scaled out to 3 replicas in the fourth interval, and then
scaled in to 2 servers in the fifth interval; and scenario (2)
{1, 2, 3, 3, 2, 2}, where the only difference with scenario 1 is
in whether a 3rd server should be started at the beginning of
the third instead of the fourth period. The expected response
times, mean and high percentiles, are depicted in Figure 15
for these two scenarios. Here the performance metrics for a
given interval are shown at the end of the interval, e.g, the
statistics of the response times for the first interval are marked
at minute 20. Also, note that the creation of a replica divides
a planning interval into two phases: during replication, and
after replication. For example, in Figure 15 a second server is
started in the second interval, thus the response times just after
minute 20 increase due to replica creation and the increased
workload, but decrease at around minute 33, when the second
server is ready. Comparing the two scenarios in Figure 15,
scenario (2) offers shorter response times, especially for the
percentiles, due to the launching of the 3rd server before the
beginning of interval 4, which has the peak number of users,
180. Cloud provisioning tools can perform these comparisons
automatically to obtain the best scaling scenario, where the
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choice differs depending on the specific objective, e.g., finding
the scenario with the minimum cost that attains the predefined
SLAs in the response-time percentiles during the operation
of the system. The methodology proposed is well-suited to
support these scaling decisions, as it can efficiently evaluate
the response-time percentiles for many scenarios explicitly
considering the impact of replication.

IX. CONCLUSION

In this paper we have introduced a measurement-driven
methodology for evaluating the impact of replication on the
QoS of relational DBaaS offerings. The methodology builds
upon an analytical model representing the database cluster con-
figurations combined with an environment model to represent
the transient replication stages. In comparison to experiments
on Amazon RDS and trace-driven simulation we have shown
the accuracy in predicting not only the mean response time,
but also the percentiles of the response-time distribution, which
are central for evaluating SLAs.

We plan to investigate more complex modeling scenarios,
including mixed workloads and multiple replica creation and
deletion. In addition, we will investigate, through experimenta-
tion, the relationship between workload variance, synchroniza-
tion overhead and workload characteristics. We anticipate that
replication for performance will be further adopted by DBaaS
users and thus anticipate the need for such a methodology
within current cloud provisioning tools.
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