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a b s t r a c t

Fork-join queues are natural models for various computer and communications systems
that involve parallel multitasking and the splitting and resynchronizing of data, such as
parallel computing, query processing in distributed databases, and parallel disk access. Job
response time in a fork-join queue is a critical performance indicator but its exact analysis
is challenging.We introduce a stochastic model for K -node homogeneous fork-join queues
(K ≥ 2) that focuses on the difference in length between any node-queue and the shortest
one, truncating the state space such that the maximum difference is at most a constant C .
Whilst most previous methods focus on the mean response time, our model is also able to
evaluate the response time distribution, as well as accommodating phase-type processing
times and Markovian arrival processes. In order to tackle scenarios with high loads, which
require a large value of C to provide sufficient accuracy, we develop an efficient algorithm
using matrix-analytic methods. Tests against simulation show that the proposed model
yields accurate results for 2-node fork-join queues. As the model becomes numerically
intractable for large values of K , we further propose an approximate approach, based on
properties of order statistics and extreme values. The approximation gives a high degree
of accuracy on response time tails, and has the advantage of being efficient and scalable,
requiring only the analytical results for a single-node and 2-node fork-join queues, which
we obtain with the aforementioned matrix-analytic model. Comparison with simulation
results shows that our approximation yields good fits for the tails, even in very large cases
with general processing and inter-arrival times.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Modern computer and manufacturing systems rely heavily on parallelism to satisfy their performance requirements,
exploiting large resource pools to perform tasks that would otherwise be uneconomical or even infeasible. For instance, the
Google search engine relies on a high degree of parallelism to return a huge volume of answers in less than a second [1].
Parallelism can be found in many different computer systems, such as query processing in distributed databases, parallel
computing environments, distributed stream-processing systems, and parallel disk access to improve I/O throughput in
storage systems, amongst others. In manufacturing systems, parallelism can also be found in processes such as product-
assembly and logistic operations that involve multiple suppliers [2]. A key ingredient in many of these systems is that, after
a stepwheremany subtasks are executed in parallel by a set of resources, the final product can only be delivered once all the
subtasks have been completed, thus introducing a synchronization point. Fork-join (FJ) queues are a popular abstraction for
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these kinds of operations, as they are able to capture the parallel execution and synchronization aspects precisely. FJ queues
have therefore received significant attention, although their analysis has proved challenging.

In a FJ queue, each arriving job is split into K subtasks, each of which is assigned to one of K parallel processors, or nodes.
Once assigned to a node, a subtask must wait in a queue until its service starts, according to some scheduling policy. After
each subtask is completed, itmustwait for all other subtasks in the same job to also complete, atwhich point the job’s service
terminates. A key performancemetric in a FJ queue is the job response time, although its computation – certainly beyond its
mean value – is notoriously difficult due to the synchronization step. In fact, exact solutions for themean response time are
only available for FJ queueswith K = 2 nodes. A large body of work has therefore been devoted to obtaining approximations
for the mean, and, in a few cases, the distribution of the response time. Further, most approximations focus on the case with
negative exponential execution times and Poisson arrivals. Notice that the FJ queue deals with themaximum of node-queue
response times, which are not independent due to the synchronized arrivals. This is inherently different from ‘‘first to finish’’
schedules which require aminimum value.

In the present work, we introduce a stochastic model for K -node FJ queues to determine the response-time distribution.
Themodel focuses on the difference in length between any node-queue and the shortest one, the state space being truncated
such that the maximum difference is at most a constant number C . The value needed for this bound is much smaller
than the traditional bound imposed on the raw queue length to obtain the same precision, especially at high loads. We
propose a numerical approach based onmatrix-analytic methods, where the key step lies in the solution of amatrix integral
equation. The sizes of the matrices involved in this equation grow rapidly with K and C but our method provides significant
improvements over existingmethods formoderate values of these parameters and is also applicable in a variety of situations
where similar equations arise.

Whilst the matrix-analytic model provides accurate results for small-scale cases, it becomes numerically intractable
for large values of K and C . We therefore propose an Efficient Approximation for Response-Time Tails (EAT), which relies on
properties of order statistics and extreme values. It stems from an argument that the response-time percentiles of a K -node
FJ queue grow at rate O(ln(K)), based on the observation that both upper and lower bounds also grow at this rate. EAT has
the advantage of being efficient and scalable, requiring only the analytical results for a single-node and 2-node FJ queues,
whichwe obtain by the precedingmatrix-analytic approach. Experimental results show that EAT yields good fits for the tails,
even in very large caseswith general processing and inter-arrival times. Its scalability and accuracymake the approximation
a good candidate to support scheduling, resource provisioning and optimization decisions.

The main contributions of this paper can be summarized as follows:

• A stochastic model, presented in Section 4, to determine the response-time distribution in homogeneous K -node FJ
queues. The model handles phase-type processing times and Markovian arrival processes.

• An efficient method to solve a matrix integral equation, required to obtain the response-time distribution, which is
introduced in Section 5. The method is shown to outperform existing approaches and can be used for similar equations
that arise in other contexts.

• An approximation based on extreme value theory for FJ queues with a large number of parallel servers, which exploits
the stochastic model introduced in Section 4, to provide accurate estimates of the response-time tail. The approximation
approach is described in Section 6 and tested in Section 7.

Before introducing the stochastic model, we overview related work and provide background definitions.

2. Related work

There is a considerable body of published research on FJ queues, as recently surveyed in [1]. The complexity of FJ queues
is evident in the paucity of exact results available.With Poisson arrivals and exponential service times, the queue-length dis-
tribution for the 2-node queue is derived in [3], while [4] provides an expression for themean response-time, which has also
been obtained in [5] for cases with more general inter-arrival times (hyper-exponential) and service times (Erlang). More
general cases have been considered only through approximate analysis. In particular, for FJ queues with Poisson arrivals and
exponential service, [4] provides an approximation for the mean response-time in FJ queues with K nodes, 2 ≤ K ≤ 32.
This method is based on the observation that the upper and lower bounds on the mean response time grow at the same rate
as a function of the number of nodes K . In this setting, lower and upper bounds on the mean response-time [6] have also
been obtained. [7] considered a system with a serial-parallel phase-type arrival process and exponential or Erlang service
times, in which a job is split into 1 ≤ i ≤ K subtasks. It derived both upper and lower bounds on the expected response
time. For general inter-arrival and service-time distributions, approximations for the mean response-time in heavy-traffic
can be found in [8].

Although most previous methods focus on the mean response-time, a few have considered its distribution. An approxi-
mation for the case where each node has multiple exponential servers and a Poisson arrival process is considered in [9]; it
relies on estimating two coefficients through extensive simulations and offers good accuracy for the mean response-time
when 2 ≤ K ≤ 50 as well as for the response-time distribution when K = 2. A similar approach is proposed in [10] for the
case that inter-arrival times form a general renewal process, with good accuracy for the response-time distribution when
2 ≤ K ≤ 50, assuming Erlang inter-arrival times. In the sequel we introduce a model to compute the response-time dis-
tribution in a K -node FJ queue where service times are phase-type and the arrival process is Markovian (MAP). The model
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Fig. 1. Fork-join queue.

relies on observing the difference in size between any node-queue and the shortest node-queue, and truncating the state
space to limit the maximum difference to a constant C . We demonstrate that the model provides accurate results for the
response-time distribution. Since the numerics of the model become intractable at large values of K and C , we introduce a
method that exploits the results of the model for K = 2 to approximate the response-time tails at larger K . Experimental
results show that the approximation is accurate even at very large values of K .

3. Preliminaries

In this section we define phase-type distributions, Markovian arrival processes and a reference model for the FJ queue,
which will be considered in subsequent sections.

3.1. Phase-type distributions

Phase-type (PH) distributions have the ability to capture very general behaviors; they are dense in the set of all positive-
valued distributions whilst maintaining some of the analytical tractability of the exponential distribution [11]. A PH random
variable X represents the absorption time in aMarkov Chain (MC)with n+1 states, where the states {1, . . . , n} are transient
and state 0 is absorbing [11]. Let τ be the 1 × n vector of the MC initial probability distribution for the transient states, and
let S be the n × n sub-generator matrix holding the transition rates among the transient states. We denote this random
variable or its distribution as PH(τ, S). The vector S∗

= −S1 holds the absorption rates from the transient states, where 1
denotes a column vector of ones. Its cumulative distribution function (CDF) is given by F(x) = 1 − τ exp(Sx)1, for x ≥ 0,
and its expected value is E[X] = −τS−11.

3.2. Markovian arrival processes

Compared to traditional Poisson arrivals, a Markovian arrival process (MAP) can represent more general inter-arrival
times, capturing features such as high variability and auto-correlation. The continuous-time MAP [11] is a marked MC with
generator matrix D = D0 + D1. The transition rates not associated with arrivals are held in D0, while the rates that trigger
new arrivals are kept in D1. The diagonal entries of D0 hold the total exit rate in each state, such that (D0 + D1)1 = 0. We
denote this process as MAP(ma,D0,D1), where ma is the number of states, or arrival phases, in the MC. The mean arrival
rate is λ = dD11, where d is the stationary distribution of the underlying MC, i.e. dD = 0 and d1 = 1.

3.3. Reference model

We consider a fork-join queuemade of K parallel processing resources, eachwith an associated buffer, as shown in Fig. 1.
Jobs arrive following a MAP(ma,D0,D1), and fork into K subtasks, which are sent to the K servers for processing. Subtasks
in front of a server form a single queue in the order of arrival and receive service when the server becomes available with
first-come first-served (FCFS) scheduling. The K servers are homogeneous, thus the processing time of each subtask follows
a PH(αtask, Stask) distribution. For the case of exponential service times, we assume a mean processing time 1/µ, such that
αtask = 1, and Stask = −µ. When a subtask completes service, it waits at the join point until all its partners complete
execution. When all the subtasks of a job complete service, the job service is completed and the job leaves the system. The
response-time of a job, i.e., the time interval between its arrival and its departure, is thus the maximum of the response-
times of its subtasks. Finally, the system utilization U , i.e., the expected fraction of the time that a server is busy, is simply
U = λ/µ, where λ is the mean arrival rate, as defined in the previous section, and µ is the subtask service rate.

4. The response-time distribution

In this section, we introduce a stochastic model to estimate the response-time distribution of a parallel job in a K -node
FJ queue, as in Fig. 1. The distribution is obtained by considering the service-time and waiting-time processes separately,
and connecting them via a PH representation. We therefore provide PH representations for the waiting-time, service-time,
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Table 1
Transition rates for S and A(jump) .

From To Rate Matrix

(n0, . . . , ni−1, ni, . . . , nC ) (n0, . . . , ni−1 + 1, ni − 1, . . . , nC ) niµ, i ≥ 1 S
(n0, n1, . . . , nC−1, nC ) (1, n0 − 1, n1, . . . , nC−2, nC−1 + nC ) n0µ A(jump)

and response-time distributions. In the following we pay special attention to the shortest of the parallel queues, and refer
to a period during which the server of the shortest queue is busy as an all-busy period, and a period during which at least
one server is idle as a not-all-busy period.

4.1. The waiting-time distribution

To determine the waiting-time distribution, we observe the FJ queue only during the all-busy periods, and define a
bivariate Markov process {X(t), J(t)|t ≥ 0}. The age X(t) keeps track of the total time-in-system of the youngest job in
service [12], thus taking values in [0, ∞), and increasing linearly with rate 1 if no service completions occur. In case of a
service completion in the shortest queue, which triggers the start of a new job service, X(t) has a downward jump, with its
new value being equal to the waiting-time of the job starting service. The phase J(t) = (A(t),D(t)) holds the joint state of
the arrival process A(t) and the service process D(t). The arrival process is a MAP with ma phases, so that, assuming D(t)
takes values in a set of size ms, the phase process takes values in a set of size m = mams. The process {X(t), J(t)|t ≥ 0} is
in fact a Markov process since, at any time t , its evolution depends only on its current state, as the state of the phase J(t)
determines not only its own evolution, but also whether X(t) suffers a downward jump or continues increasing at rate 1.

To model the service process of a K -node FJ queue, we first note that the state of the service process is fully described
by the vector (q1, q2, . . . , qK ), where qi holds the number of subtasks in queue i, either waiting or in service, for 1 ≤ i ≤ K .
Since all the servers are identical, we order the queue lengths such that qi ≤ qj for i < j and 1 ≤ i, j ≤ K , making q1 and qK
the length of the shortest and longest queues, respectively. During the all-busy period the shortest queue length is positive
(q1 > 0), while during the not-all-busy period, q1 is 0 since the shortest queue must be empty. Instead of keeping this de-
scription, we focus on the queue-length differences with respect to the shortest queue. Since the queues are homogeneous,
instead of recording this difference for each queue, it suffices to count the number of queues with the same queue length.
We thus model the service process D(t) by keeping track of the number of queues with j more subtasks than the shortest
queue, nj(t), for j ≥ 0. In principle, the difference in length between any queue and the shortest one is unbounded. We thus
truncate the state space such that the difference between the longest and the shortest queue is limited to be atmost C < ∞,
such that the D(t) is given by (n0(t), n1(t), . . . , nC (t)). Thus D(t) takes values in the set SD = {(n0, . . . , nC )|

C
i=0 ni = K ,

ni ∈ {0, . . . , K}}. The cardinality of SD is

ms =


K + C − 1

C


. (1)

The accuracy of this approximation depends on the system parameters. For instance, when the utilization is high, we may
expect a higher probability of large differences than under low utilizations, thus requiring a larger value of C to achieve the
same accuracy. Section 4.5 evaluates the accuracy of this approximation and explores the selection of the limit C .

To determine the PH representation (αwait, Swait) of the waiting-time distribution, we rely on the stationary distribution
π(x) of the (X(t), J(t)) process, which has a matrix-exponential representation π(x) = π(0) exp(Tx), for x > 0, as shown
in [13]. Them × m matrix T satisfies the non-linear integral equation

T = S(MAP)
+


∞

0
exp(Tu)A(MAP)(u)du, (2)

where S(MAP)
= S ⊗ Ima , A

(MAP)(u) = A(jump)
⊗ exp(D0u)D1, In is the identity matrix of size n, and ⊗ denotes the Kronecker

product. S and A(jump) are ms × ms matrices that hold the transition rates of the service process associated to transitions
without andwith a new job starting service, respectively [12,13]. The generator of themarginal service phase process during
an all-busy period is thus S + A(jump). Notice that the service completion of the subtask currently in service in any of the n0
shortest queues triggers a new job to start service, thus corresponding to rates in matrix A(jump); transitions in other queues
correspond to rates in matrix S. Table 1 summarizes the service transition rates that correspond to matrices S and A(jump).
Notice that transitions that lead any of the differences to exceed the limit C are re-assigned to C . A small example of these
matrices is provided in Appendix C.

4.1.1. Computing π(0)
To determine the steady state distribution π(0) of the phase at the beginning of an all-busy period, it is essential to

connect the not-all-busy and the all-busy periods [12]. During the not-all-busy period we keep the same description of the
phase J(t) = (A(t),D(t)), with the service phase D(t) taking values in the set SD. In this case the shortest queue is empty,
and therefore n0 holds the number of idle servers. Let thems × ms matrix Snot-all-busy hold the transition rates across service
phases, between arrivals, during a not-all-busy period, as summarized in Table 2. An example is provided in Appendix C.
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Table 2
Transition rates for Snot-all-busy .

From To Rate

(n0, . . . , ni−1, ni, . . . , nC ) (n0, . . . , ni−1 + 1, ni − 1, . . . , nC ) niµ, i ≥ 1

Since π(0) is the distribution of the phase J(t) at the beginning of an all-busy period, it solves

π(0) = π(0)


∞

0
exp(Tu)(A(jump)

⊗ exp(D0u))du(Snot-all-busy ⊕ D0)
−1(Ims ⊗ D1). (3)

Here we consider that, during an all-busy period, the age reaches a value uwith density π(0) exp(Tu). At this point a down-
ward jump of size larger than u occurs with density A(jump)

⊗ exp(D0u). This results in a transition to a not-all-busy period,
where the phase process evolves according to the sub-generator Snot-all-busy ⊕D0, until an arrival occurs and triggers the pro-
cess into a new all-busy period. Notice that when a job arrives during a not-all-busy period, the service phase D(t) remains
unchanged since every queue receives a new subtask, keeping their differences unchanged. The distribution of the phase just
after the arrival that initiates the all-busy period, given the phase just before this arrival, is thus (Ims ⊗ D1). To compute the
integral in Eq. (3), we define P =


∞

0 exp(Tu)(Ims ⊗exp(D0u))du, and integrate P by parts to obtain TP +P(Ims ⊗D0) = −Im,
which, since T is known, is a Sylvester matrix equation that can be solved in O(m3) time to find P . Once P has been obtained,
π(0) can be found by solving the linear system (3) in O(m3) time. Recall thatm = ma

K+C−1
C


.

Notice that the stationary distribution π(x) exists if {X(t), J(t)|t ≥ 0} is positive recurrent, which occurs under the
condition [13]

ϱ = ρ


∞

0
uA(MAP)(u)du1 > 1, (4)

where ρ is the invariant probability vector of the matrix S(MAP)
+ (A(jump)

⊗ D−1
0 D1). Letting the steady state distribution of

the phase J(t) during the all-busy period be αbusy = −π(0)T−1, and defining ϕ = (T − S(MAP))1, the PH representation of
the waiting-time is given by [12]

αwait = γαbusy ◦ ϕ/((αbusy ◦ ϕ)1), Swait = Λ−1T ′Λ, (5)
where ◦ stands for the Hadamard product [14], ′ denotes the matrix transpose, Λ is a diagonal matrix such that Λ1 = α′

busy,
and γ is the probability that a job has to wait. For the sake of completeness, we recall the computation of γ , by first defining
η0 to be the number of service completions in an all-busy period, and η1 the number of arrivals in a not-all-busy period,
respectively. Their expected values can be obtained as [12, Section 7.2] E[η0] = −(π(0)T−1(A(jump)

⊗ Ima)1)/(π(0)1), and
E[η1] = 1, since an arrival during the not-all-busy period adds one subtask to every queue, initiating the all-busy period.
Thus the probability that a job has to wait is γ = (E[η0] − 1)/(E[η0] − 1 + E[η1]) = 1 − 1/E[η0] since, in a cycle made of
one all-busy and one not-all-busy period, E[η0] − 1 is the expected number of jobs that have to wait, and E[η0] − 1+ E[η1]

is the expected number of job arrivals.

4.2. The service-time distribution

Although the subtask service-time follows an exponential distribution, the job service-time does not, as it is composed
of multiple subtasks, and completes service only when all subtasks terminate. We now show that the job processing times
follow a PH distribution, with parameters PH(αservice, Sservice). Let Y (t) be the service state of a tagged job in service at time
t , which we define as Y (t) = (R(t),N(t)). Here R(t) records the number of subtasks in the tagged job that have not finished
service at time t , thus R(t) ∈ {1, . . . , K}. Similarly to the service phase defined for thewaiting-time distribution, the variable
N(t) = (n0, . . . , nC ) holds the state of the queues, with ni being the number of queues with i more subtasks in queue than
the shortest queue. However, here we focus on the queue-lengths in front of the tagged job only, ignoring any job behind
the tagged one. This allows us to keep track only of the state of the r queues where subtasks in the tagged job have not
completed, as the state of the other K − r queues is set to 0 after the tagged subtasks complete. (R(t),N(t)) thus takes
values in the set SRN = {(r, (n0, . . . , nC ))|r ∈ {1, . . . , K}, ni ∈ {0, . . . , r},

C
i=0 ni = r}.

Therefore, the cardinality of SRN is

|SRN | =


K + C − 1

C


+

K−1
r=1


r + C − 1
C − 1


. (6)

For example, for the case K = 3 and C = 2, if only one subtask has not finished service, thus R(t) = 1, and N(t) takes values
in {(2, 0, 1), (2, 1, 0)}, as the 2 queues where the tagged subtasks finished service have queue-length 0, and the other queue
can have a queue-length of either 1 or 2.

To obtain a PH representation of the service-time distribution we describe the transitions among the states in SRN with
a sub-generator Sservice. To this end, we partition SRN into two sets: in the full phases none of the tagged subtasks have com-
pleted service, thus R(t) = K ; and in the not-full phases, at least one tagged subtask already finished service, thus 1 ≤
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Table 3
Transition rates for S(full)-(not-full) and Snot-full .

From To Rate Matrix

(K , (n0, . . . , ni, . . . , nC )) (K − 1, (1, n0 − 1, . . . , nC−2, nC−1 + nC )) n0µ S(full)-(not-full)
(r, (n0, . . . , ni−1, ni, . . . , nC )) (r, (n0, . . . , ni−1 + 1, ni − 1, . . . , nC )) niµ (i ≥ 2) Snot-full
(r, (n0, n1, . . . , nC )) (r − 1, (n0 + 1, n1 − 1, . . . , nC )) n1µ Snot-full

R(t) < K . Notice that the first set has ms phases, as defined in Eq. (1), and letting the number of not-full phases be mnf , we
see from Eq. (6) that |SRN | = ms + mnf . Partitioning the sub-generator Sservice according to these subsets, we have

Sservice =


Sfull S(full)-(not-full)
0 Snot-full


⊗ Ima ,

thus the Sservice matrix is of size mser = (ms + mnf )ma. Notice that here we have included the arrival phase, such that dur-
ing service we keep track of the arrival phase at the time when the service started. Although this is not necessary for the
service-time distribution on its own, it will become necessary when building the response-time distribution in the next sec-
tion. Since Sfull holds the service transition rates without a service completion in the shortest queue, we have Sfull = S. The
transition rates in S(full)-(not-full) and Snot-full are summarized in Table 3. Notice that the absorbing vector S∗

service = −Sservice1
has a single nonzero element equal to µ, which corresponds to the phase where the last subtask completes service. Having
obtained Sservice, it remains to determine the initial probability vector αservice, which is the stationary probability with which
a job starts service in each phase. The proof of the following result can be found in Appendix A.

Proposition 1. The job service-time follows a PH distribution with parameters (αservice, Sservice), where

αservice = [(1 − γ )π(0) + cγαbusy(T − S(MAP)) 01×mnf ma ], (7)

where c = αbusy(T − S(MAP))1.

4.3. The response-time distribution

We now derive the PH representation of the response-time distribution, the proof of which can be found in Appendix B.

Theorem 1. The job response-time follows a PH distribution with parameters (αres, Sres), where

αres =

(1 − γ )π(0) α̃busy 01×m


, Sres =

 Sservice 0mser×mser 0mser×m

0mser×mser S̃service (−S̃service1)Ps,w
0m×mser 0m×mser Swait

 , (8)

where S̃service = ∆−1S ′

service∆, ∆ is a diagonal matrix such that 11 = η′, and η = −αserviceS−1
service is the stationary distribution

of the phase during service. Also, α̃busy = (−Sservice1)′∆. Finally, Ps,w is an mser × mmatrix given by

Ps,w =


P̃s,w

0mamnf ×m


,

where P̃s,w = Γ −1(T − S(MAP))′Λ, and Γ and Λ are diagonal matrices such that Γ 1 = (T − S(MAP))′Λ1 and Λ1 = α′

busy.

Notice that this result is exact as long as the PH representations of the service and waiting-time distributions are exact.
Since we obtain approximate representations for these distributions, the response-time distribution is also approximate.

4.4. Extension to PH services

The model presented so far has focused on exponential service-times, but it can be extended to the more general case of
PH distributions, as we now show. The main difference lies in the service process D(t) as we now need to keep track of the
phase of the subtasks in service. Thus, assuming the subtask service-time distribution is PH(αtask, Stask) with mtask phases,
we define DPH(t) = (ni,j(t), 0 ≤ i ≤ C, 1 ≤ j ≤ mtask), where ni,j(t) is the number of queues with queue-length difference
i with respect to the shortest queue, and such that the subtask in service is in phase j, at time t . Thus DPH(t) takes values in
the set SPHD = {n = (n1, . . . , nC )|ni = (ni,1, . . . , ni,mtask), ni,j ∈ {0, . . . , K},

C
i=0
mtask

j=1 ni,j = K}.
Similarly, the matrices S and A(jump) need to be re-defined, considering that A(jump) only keeps transition rates associated

to the start of a new job service, i.e., service completions in any of the shortest queues. Table 4 summarizes the service
transition rates that correspond to matrices S and A(jump). The first row in this table considers the case where the subtask in
service goes through a service-phase transition (from phase j to phase k, with 1 ≤ j, k ≤ mtask), without completing service,
in any of the queues. The second row covers the case of service completions at any queue but the shortest one, which are
also kept in S. In this case, the subtask in service phase j completes, letting a new subtask start service in phase k, with
1 ≤ j, k ≤ mtask. Finally, the third row considers the case where the service completion occurs in any of the shortest queues,
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Table 4
Transition rates for S and A(jump) with PH services.

From To Rate Matrix

(n0, . . . , ni, . . . , nC ) (n0, . . . , ni − ej + ek, . . . , nC ) ni,jStask(j, k), i ≥ 0 S
(n0, . . . , ni−1, ni, . . . , nC ) (n0, . . . , ni−1 + ek, ni − ej, . . . , nC ) ni,jS∗

task(j)αtask(k), i ≥ 1 S
(n0, n1, . . . , nC−1, nC ) (ek, n0 − ej, n1, . . . , nC−2, nC−1 + nC ) n0,jS∗

task(j)αtask(k) A(jump)

Table 5
Transition rates for Snot-all-busy with PH services.

From To Rate

(n0, . . . , ni, . . . , nC ) (n0, . . . , ni − ej + ek, . . . , nC ) ni,jStask(j, k), i ≥ 1
(n0, . . . , ni−1, ni, . . . , nC ) (n0, . . . , ni−1 + ek, ni − ej, . . . , nC ) ni,jS∗

task(j)αtask(k), i ≥ 2
(n0, n1, . . . , nC ) (n0 + 1, n1 − ej, . . . , nC ) n1,jS∗

task(j)

which is recorded bymatrix A(jump). Here again the subtask completes service in phase j, and the new subtask starts in phase
k, such that now there is a single shortest queue, which is in phase k.

During the not-all-busy period, a similar modification is necessary, although in this case the service process DPH(t) needs
to reflect that empty queues do not have an associated subtask in service that requires keeping track of its phase. To differen-
tiate it from theDPH(t) process during the all-busy period,we label this process D̄PH(t). The D̄PH(t) process takes values in the
set S̄PHD = {(n0, n1, . . . nC )|ni = (ni,1, . . . , ni,mtask), 1 ≤ i ≤ C, n0 ∈ {0, . . . , K}, ni,j ∈ {0, . . . , K}, n0 +

C
i=1
mtask

j=1 ni,j =

K}. In this case, the first entry of the vector (n0, n1, . . . nC ) holds the number of idle servers, while the remaining entries are
the same as for DPH(t). Table 5 summarizes the entries of the matrix Snot-all-busy, which are the transition rates across service
phases during a not-all-busy period. Here the first row corresponds to phase transitions without a service completion, while
the second and third rows correspond to service completions. The third row shows how a subtask in a queue with queue-
length one completes service in phase j, thus incrementing the number of idle queues n0. A final adaptation is needed to
compute π(0), the distribution of the phase J(t) at the beginning of an all-busy period, which now solves

π(0) = π(0)


∞

0
exp(Tu)(A(jump)

not-all-busy ⊗ exp(D0u))du(Snot-all-busy ⊕ D0)
−1(K (start)

⊗ D1).

The difference with respect to Eq. (3) lies in the matrices A(jump)
not-all-busy and K (start), which connect the state space when going

from an all-busy period to a not-all-busy period, and vice versa, respectively. Thematrix A(jump)
not-all-busy is similar to A(jump) as de-

fined in Table 4, but from a state (n0, n1, . . . , nC ) ∈ SPHD , the transition is to a state (1, n1, . . . , nC ) ∈ S̄PHD with rate n0,jS∗

task(j).
Thus this transition corresponds to a service completion in the shortest queue, which starts a not-all-busy period with one
empty queue. On the other hand, the matrix K (start) maps a state (n0, n1, . . . , nC ) ∈ S̄PHD into a state (n0, n1, . . . , nC ) ∈ SPHD
with probability pn0,n0 . Again, the only change is related to the shortest queues, which in this case go from the idle state to
an initial phase of service. As each of the n0 idle servers selects initial service phase according to αtask, the probability that
the shortest queues start the all-busy period in state n0 = (n0,1, . . . , n0,mtask) follows a multinomial distribution, thus

pn0,n0 =
n0!

n0,1! · · · n0,mtask !
αtask(1)n0,1 · · · αtask(mtask)

n0,mtask ,

where αtask(i) denotes the ith entry of vector αtask. Once π0 is found, the waiting-time distribution is obtained as in the case
with exponential services. A similar extension is then needed to obtain the service-time and response-time distributions,
which we omit for brevity.

4.5. Experimental validation

In this section we show that the proposed model is able to provide accurate results as long as the limit C is large enough.
Although the model is defined for any number of parallel queues K , it becomes time consuming and computationally
expensive with increasing K , especially in cases with high loads, as these cases require a large value of the limit C to provide
sufficient accuracy. To handle caseswith large K , we propose an approximation approach in Section 6, which provides a high
degree of accuracy for the response-time tails in FJ queues with K > 2, exploiting the results of the model proposed for the
K = 2 case. We thus focus on the 2-node FJ queue, considering different distributions for the arrival and service processes,
and different utilization levels. For the service times, we consider exponential (Exp), Erlang-2 (ER2), and 2-phase hyper-
exponential (HE2) distributions. For the arrival process, we consider Poisson (Exp), and general order-2 MAPs (MAP). We
thus cover a broad range of behaviors in terms of variability, measured by the squared coefficient of variation (SCV), defined
as C2

X = Var[X]/E2
[X], for a random variable X . The Exp and ER2 distributions have C2

X equal to 1 and 0.5, respectively, while
for the HE2 distribution we set it to 10. For MAP arrivals we also set C2

X = 10, and the decay rate of the auto-correlation
function is set to 0.5. The parameters of the HE2 distribution are computed with the moment-matching method in [15],
while the matrices D0 and D1 of the MAP are obtained with the method in [16].



106 Z. Qiu et al. / Performance Evaluation 91 (2015) 99–116

Table 6
Approximation error compared with exact results and simulations.

Arr Ser U Measure Err(%)
C = 5 C = 50 C = 100 C = 500 C = 750 C = 1000

Exp Exp

0.10 mean <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
R2(99) 0.06 0.06 0.06 0.06 0.06 0.06

0.50 mean 2.14 <0.01 <0.01 <0.01 <0.01 <0.01
R2(99) 5.85 0.04 0.04 0.04 0.04 0.04

0.90 mean 49.30 0.84 0.01 <0.01 <0.01 <0.01
R2(99) 55.21 3.46 0.05 0.04 0.04 0.04

0.95 mean 68.19 9.47 0.98 0.03 0.03 0.03
R2(99) 70.76 20.98 4.17 0.01 0.01 0.01

Exp HE2

0.50 mean 33.23 0.42 0.01 0.01 0.01 0.02
R2(99) 26.81 0.88 0.01 <0.01 <0.01 <0.01

0.90 mean 83.57 47.28 25.28 0.03 0.03 0.03
R2(99) 79.44 54.46 38.43 0.11 0.07 0.07

0.95 mean 91.31 67.96 49.98 3.35 0.38 0.07
R2(99) 94.26 83.16 59.31 12.60 1.89 0.10

Exp ER2

0.5 mean 0.51 <0.01 <0.01 <0.01 <0.01 <0.01
R2(99) 2.01 0.02 0.02 0.02 0.02 0.02

0.90 mean 34.11 0.07 <0.01 <0.01 <0.01 <0.01
R2(99) 40.69 0.23 <0.01 <0.01 <0.01 <0.01

0.95 mean 54.01 2.60 0.07 0.01 0.01 0.01
R2(99) 76.50 47.37 45.90 <0.01 <0.01 <0.01

MAP Exp

0.50 mean 25.43 <0.01 <0.01 <0.01 <0.01 <0.01
R2(99) 35.23 0.02 <0.01 <0.01 <0.01 <0.01

0.90 mean 57.32 11.06 3.37 0.07 0.07 0.07
R2(99) 56.48 13.87 6.24 <0.01 <0.01 <0.01

0.95 mean 71.05 21.78 11.02 0.23 0.09 0.08
R2(99) 70.16 22.26 13.26 0.45 0.04 <0.01

MAP HE2

0.50 mean 52.35 5.49 0.40 <0.01 <0.01 <0.01
R2(99) 47.61 11.00 1.24 <0.01 <0.01 <0.01

0.90 mean 86.40 54.38 36.53 2.10 0.19 0.14
R2(99) 85.77 57.24 42.63 7.59 1.37 0.08

For each setting, the simulations were run for 5000 times with 200,000 samples each time, from which we obtain the
response-time mean and percentiles, and their 95% confidence intervals. Let the pth percentile of the response-time of a
K -node FJ queue be RK (p). We show in Table 6 the errors of the mean response-time, and R2(99) as an example. We also
consider different load levels, 0.1, 0.5, 0.9, and 0.95. The case with MAP arrivals, HE2 services, and load 0.95 is not shown
here, as we could not obtain a stable result for the tails via simulation due to the high variability. For increasing values of C ,
Table 6 depicts the relative error obtained with the approximation. For the mean response-time we compare against exact
methods for 2-node FJ queues under exponential arrivals and services [4,8]. For queues with MAP arrivals and PH services,
and for the percentiles, we compare against simulation results. With C = 100, the relative error is below 1% for most of the
test cases, with the exception of HE2 services, and the cases with 0.95 load, which require a larger C to reach this accuracy.
We expect this to be the most challenging case, as the large SCV implies service-times with a long tail, potentially causing
large differences among the parallel queues. For instance, with Exp arrivals and HE2 services, under 0.9 load, the error with
C = 100 and 500 is 38.34% and 0.04%, respectively. In addition, the statistical characteristics of the inter-arrival times have
a clear effect on the approximation accuracy, as the error achievedwith Exp arrivals is always smaller than the one achieved
with MAP arrivals. For instance, for the case with Exp arrivals and services with a 0.95 load, it requires C = 500 to reach
an error lower than 1%, while for the same case but under MAP arrivals, it requires C = 1000. This is caused by the high
variability and auto-correlation of the arrival process, as this leads to a high probability that short inter-arrival times come
in bursts, creating longer queues. To deal with these large cases we rely on a novel method to compute the matrix T , which
is the topic of the next section.

5. The computation of the T matrix

As described in Section 4, finding the PH representation of the waiting-time distribution involves solving Eq. (2) to find
T . In this section we propose a new method for solving Eq. (2), and illustrate how it compares with existing methods.

5.1. The Sylvester-equation approach (Sylv)

The standard method [13] to solve Eq. (2) is to start with T (0)
= S(MAP), and iteratively compute
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T (n)
= S(MAP)

+


∞

0
exp(T (n−1)u)A(MAP)(u)du,

until convergence is reached. Although each iteration can be performed using numerical integration, a more efficient and
numerically stable approach [17] relies on defining a matrix L as

L =


∞

0
exp(Tu)(Ims⊗) exp(D0u)du,

such that Eq. (2) becomes T = S(MAP)
+ L(A(jump)

⊗ D1). Integrating L by parts, we find that L solves the Sylvester equation
TL + L(Ims ⊗ D0) = −I . The method then starts with T (0)

= S(MAP), and solves T (n)L(n)
+ L(n)(Ims ⊗ D0) = −I in each

iteration to find L(n). This is a Sylvester matrix equation that can be solved with the Hessenberg–Schur algorithm [18]. The
next iteration continues with T (n+1)

= S(MAP)
+ L(n)(A(jump)

⊗ D1) until convergence is reached. Each step of this iteration
therefore takes O(m3) time.

5.2. A Riccati-equation approach (NARE)

Wenowpropose a different approach for finding T , which consists in defining a non-symmetric algebraic Riccati equation
(NARE) [19] associated to anM-matrix. AnM-matrix can be written as σ I − B, with B ≥ 0 and σ ≥ ρ(B), where ρ(B) is the
spectral radius of B [19]. While NAREs have been used in the past to solve fluid queues, this is first time a NARE is proposed
to find the T matrix associated to the age process. Let L̄ be

L̄ =


∞

0
exp(Tu)(A(jump)

⊗ exp(D0u))du

which we integrate by parts to obtain

T L̄ + L̄(Ims ⊗ D0) = −A(jump)
⊗ Ima . (9)

Since Eq. (2) can be written as T = S(MAP)
+ L̄(I ⊗ D1), we replace T in (9) to obtain

S(MAP)L̄ + L̄(Ims ⊗ D1)L̄ + L̄(Ims ⊗ D0) + A(jump)
⊗ Ima = 0, (10)

which is a NARE with L̄ unknown. Let H and M be defined as

H = −


Ims ⊗ D0 I ⊗ D1

−A(jump)
⊗ Ima −S(MAP)


, M = −


Ims ⊗ D0 I ⊗ D1

A(jump)
⊗ Ima S(MAP)


.

Then every solution to (10) corresponds to an invariant subspace of H , and M is in fact an M-matrix. Therefore, we can use
the Schur decompositionmethod [19] to determine L̄, fromwhich we obtain T . As a result, we can find T in a single iteration
that requires O(8m3) time. Notice that M being an M-matrix is closely related to the definition of L̄. Other choices of this
matrix do not lead to a NARE with an associatedM-matrix.

5.3. Comparison of approaches for calculating T

To illustrate the proposed approach, we compare NARE against the Sylv method. Table 7 summarizes the computation
times that eachmethod requires to find T for the 2-node FJ queue, under different settings. The experimentswere performed
in MATLAB, using an Intel Core i7-3770 machine, with 16 GB of memory, running at 3.4 GHz. The rows in Table 7 consider
different arrival and service processes, and different load levels, as shown in the first two columns. The missing results
correspond to cases where the computation time exceeds 2 h. We consider different values of the limit C: 100, 500, 1000.
The column labeledm shows the corresponding size of the T matrix. Columns labeled Sylv and NARE hold the computation
times for each of these two methods, while column RS/N depicts the ratio between them. In all the test cases, the Sylv and
NARE approaches show good numerical stability, which we measure by means of the residual error. From Eq. (9), we define
the residual error as ∥T L̄ + L̄(Ims ⊗ D0) + A(jump)

⊗ Ima∥∞, where both T and L̄ are obtained with the NARE method, and
we use the infinity norm. NARE offers a good numerical behavior under all the experiments conducted, providing a residual
error below 10−13. The residual error of Sylv is decided by the stopping criterion of the iteration, which we set to 10−10.

It can be seen that NARE offers much shorter times than Sylv. For instance, with Exp arrivals and services, NARE is one
order of magnitude faster than the Sylv method. With MAP arrivals and/or PH services, we observe an increase in the
computation times for both methods, since the size of T increases. In this case, we observe a significant gain with NARE
over Sylv in all test cases. In particular, with 2-phase PH services, and C = 1000, the size of the matrix T is 4004 with Exp
arrivals and 8008 with MAP arrivals, and the Sylv approach fails to finish within 2 h. Furthermore, the time that Sylv takes
to compute T increases with increasing utilization, while the time for NARE is stable under all load levels, leading to more
significant gains under high loads. Overall, the computation times with the NARE method are up to 200 times shorter than
with the Sylv method. Clearly, the proposed NARE approach provides a numerically stable and efficient way to calculate the
T matrix, which enables the model of the FJ queue to provide higher accuracy by using a large limit C .
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Table 7
Computation times (sec) for calculating T .

Arr/Ser U C = 100 C = 500 C = 1000
m Sylv NARE RS/N m Sylv NARE RS/N m Sylv NARE RS/N

Exp/Exp
0.1

101
0.08 0.04 2.04

501
8.05 2.03 3.96

1001
93.35 17.70 5.27

0.5 0.25 0.04 6.55 22.59 1.98 11.42 220.08 17.74 12.40
0.9 1.20 0.04 30.31 107.16 1.97 54.38 1072.61 17.75 60.43

MAP/Exp
0.1

202
0.63 0.14 4.54

1002
118.18 14.05 6.93

2002
1057.43 131.4545 6.98

0.5 3.60 0.12 29.15 669.78 13.89 48.22 5926.53 127.7037 46.41
0.9 9.45 0.12 77.75 1719.85 12.94 132.93 / 107.5752 /

Exp/ER2

0.1
404

3.18 0.87 3.65
2004

/ 150.18 /
4004

/ 892.47 /
0.5 9.77 0.88 11.07 / 149.41 / / 914.74 /
0.9 43.03 0.84 51.37 / 147.74 / / 909.53 /

Exp/HE2

0.1
404

8.58 0.80 10.74
2004

/ 130.89 /
4004

/ 1243.26 /
0.5 38.06 0.73 52.42 / 130.23 / / 1238.76 /
0.9 147.62 0.74 200.05 / 128.03 / / 1256.80 /

MAP/HE2

0.1
808

50.50 8.73 5.79
4008

/ 1238.74 /
8008

/ 6824.39 /
0.5 218.98 8.65 25.31 / 1224.05 / / 7017.51 /
0.9 686.77 8.17 84.08 / 1218.42 / / 6614.62 /

6. Approximate analysis

The analytical model introduced in Section 4 produces accurate results for 2-node FJ queues but it becomes time
consuming and computationally expensive with increasing K , especially in cases with high loads, which require a large
value of the constant C to provide sufficient accuracy. Furthermore, as the value of K increases, simulations must be run for
very long times in order to achieve sufficiently accurate values for the response time percentiles, especially in the tail; again,
this is more pronounced at high load. We therefore seek an approximate approach based on the maximum of the response
times of the spawned subtasks, referred to as the efficient approximation for tails (EAT).We start with an approximation for FJ
queues with Poisson arrivals and exponential service times – parallel M/M/1 queues – and then extend to queues with MAP
arrivals and PH service.We denote the response time randomvariable for a K-node FJ queue by RK , with pth percentile RK (p).

Nelson and Tantawi derived the mean response-time for a 2-node FJ queue by decomposing the response-time of each
subtask into the sum of the time R1 that it spends in its M/M/1 queue and the synchronization delay D spent waiting for its
sibling after completion of service, which is non-zero for the subtask that finishes first and zero for its sibling [4]. Then the
total response-time for a job in the 2-node queue is shown to be

E[R2] = E[R1] + E[D] = (12 − ρ)E[R1]/8,

where E[R1] = 1/(µ − λ) is the mean of the response-time of a single M/M/1 queue, ρ = λ/µ is its utilization, and D is
obtained using Little’s law, utilizing the average number of subtasks that have completed service and are waiting for their
siblings to complete. An approximation is then formulated for a K -node FJ queue, with 2 ≤ K ≤ 32, by observing that the
upper and lower bounds of the mean response-time increase at the same rate. The bounds are derived using properties of
the random variables concerned: in particular, if the random variables {X1, X2, . . . , Xn} are associated, i.e., the covariance of
f (. . . Xi . . .) and g(. . . Xi . . .) is positive for any pair of increasing functions f , g ,

P(max
1≤i≤n

Xi > x) = 1 − P


n

i=1

Xi ≤ x


≤ 1 −

n
i=1

P(Xi ≤ x).

The upper bound is attainedwhen the randomvariables {X1, X2, . . . , Xn} are independent. It can be shown that the response-
times Ri are associated and so

P(RK > t) = P(max
1≤i≤K

Ri > t) ≤ 1 −

K
i=1

P(Ri ≤ t) = 1 − (1 − exp−(µ−λ)t)K ,

the expected value of which is

E[RK ] =


∞

0
(1 − P(RK ≤ t))dt ≤


∞

0
(1 − (1 − exp−(µ−λ)t)K )dt =

 1

0

1 − uK

(µ − λ)(1 − u)
du =

HK

µ − λ

where HK is the harmonic series 1 +
1
2 +

1
3 + · · · +

1
K . Similarly, the lower bound HK/µ is obtained by neglecting queueing

effects, so that

HK/µ ≤ E[RK ] ≤ HK/(µ − λ).
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The tightness of the bounds is not the main concern, but the authors conclude that E[RK ] must grow at rate HK since
both bounds grow at that same rate. The mean response-time of a K > 2-node FJ queue can then be expressed as E[RK ] =

SK (ρ)E[R2], for K ≥ 2, where the scaling factor SK (ρ) is approximated by SK (ρ) = α(ρ)+ (1−α(ρ))HK/H2 and α(ρ) is to
be determined. It follows from simulation results for K = 4, 8, 16 and 32 thatα(ρ) ≈ 4ρ/11 provides a good approximation.
Thus

E[RK ] ≈


HK

H2
+

4ρ
11


1 −

HK

H2


, for K ≥ 2. (11)

Using Eq. (11), relative errors of less than 5% were obtained for K = 4, 8, 16 and 32.
EAT relies on a similar observation. However, whilst [4] approximates the mean response time in homogeneous K -node

FJ queues with exponential inter-arrival and service times for 2 ≤ K ≤ 32, we derive the corresponding approximation for
response time percentiles in more general K -node FJ queues with MAP arrivals and PH service times, for unlimited K > 2.
We start with an approximation for FJ queues with Poisson arrivals and exponential service times, then extend to queues
with MAP arrivals and PH service. We first recap on the necessary background in order statistics and extreme-value theory.

The maximum random variable is a special case of an order statistic, the last one, and it is convenient to express our
analysis more generally in terms of order statistics. Let X(1), X(2), . . . , X(K) be the ascending ordered sequence of random
variables X1, X2, . . . , XK (with respect to the normal arithmetic ordering), i.e. X(1) ≤ X(2) ≤ · · · ≤ X(K). Then X(i) is the ith
order statistic of X1, X2, . . . , XK (1 ≤ i ≤ K) [20]. In particular, X(K) is the maximum, one of the two extreme order statistics
(1st and K th). The cumulative distribution function (CDF) of the maximum of K independent random variables is

FX(K)
(x) =

K
i=1

Fi(x),

where Fi(x) = P(Xi ≤ x). When the Xi are also identically distributed with common CDF F(·), this simplifies to FX(K)
(x) =

FK (x).
For i.i.d. random variables with known distribution functions, so-called extreme theory can be applied to approximate

the distribution of extreme values, with increasing accuracy as the number of random variables increases. There are three
types of distributions for extreme values, among which Type I relates to sets of random variables with exponential tails [21]
and includes the Gumbel distribution (also called the log-Weibull distribution), with CDF exp(− exp−(x−µ)/β), for x ∈ R,
which has mode µ (location of the peak of the density function), mean µ + γ β , and variance β2π2/6, where γ is Euler’s
constant. The standard Gumbel distribution has µ = 0 and β = 1, giving

G(x) = exp(− exp−x).

As K → ∞, the maximum order statistic X(K) for type I distributions is asymptotically distributed as G with normalizing
constants aK and bK , i.e.,

P((X(K) − bK )/aK ≤ x) = FK (aK x + bK ) → G(x) as K → ∞. (12)

Here bK and aK are the mode and the measure of dispersion of the Gumbel distribution. In the following, we exploit this
approximation of extreme values to derive an efficient and accurate approximation for the tail of the response-time distri-
bution in K -node FJ queues. The approximation requires values for the response-time tail when K = 2, for which it uses the
model detailed in Section 4.

6.1. Asymptotic approximation for Poisson arrivals and exponential services

We first consider a K -node FJ queue where the constituent nodes are M/M/1 queues. We assume the system is homo-
geneous, i.e. that the M/M/1 queueing nodes are stochastically identical, having the same defining parameters. By using
Eq. (13), which we derive below, we can replace the time consuming analytical method for FJ queues with a large number
of nodes by a fast alternative that gives a high degree of accuracy, requiring only the analytical results for a single-node
and 2-node FJ queues. The usual trade-offs arise amongst accuracy, speed, reliability and even tractability at large K , but we
believe our approximation is viable.

Proposition 2. Following the conjecture of [4] regarding growth rates discussed above, the pth response-time percentile RK (p)
of a K-node homogeneous FJ queue with Poisson arrivals and exponential service times, is given by

RK (p) ≈ R1(p) + (R2(p) − R1(p)) ln(K)/ ln(2), (13)

where R1(p) and R2(p) are the pth response-time percentiles of single-node and 2-node FJ queueswith the same arrival and service
rates, respectively, and ln is the natural logarithm.
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(a) MAP/HE2 . (b) R(50), R(99).

Fig. 2. Errors (%) of approximation.

Proof. As explained above, the maximum value in a sample of i.i.d. negative exponential random variables approaches the

Gumbel distribution as the sample size increases, i.e., when X1, X2, . . . , XK
i.i.d.
∼ exp(α),

FX(K)
(x) ≈ exp(−K exp−αx)

as K → ∞. It follows that the pth percentile of RK , which satisfies FX(K)
(x) = p, can be approximated as

RK (p) ≈ L(K , p)/α, (14)

where L(K , p) = ln(K) − ln ln(1/p).
An upper bound Ru

K (p) on the response-time percentiles is obtained by assuming that the K parallel queues are
independent, as in [4]. Since the response-time distribution of anM/M/1 queue is exponentially distributed with rateµ−λ,
where λ and µ are respectively the arrival and service rates of the M/M/1 queue (see [22] for example), we have α = µ − λ
and so

Ru
K (p) ≈

L(K , p)
µ − λ

=
ln(K)

µ − λ
−

ln ln(1/p)
µ − λ

.

Hence, the upper bound of RK (p) grows at rate O(ln(K)). On the other hand, a lower bound Rl
K (p) is obtained by neglecting

queueing effects: in this case, the response-time is the maximum of K i.i.d. exponentially distributed service times, each
with mean 1/µ, i.e., we have

Rl(K , p) ≈
L(K , p)

µ
=

ln(K)

µ
−

ln ln(1/p)
µ

.

Therefore, this lower bound grows at the same rate O(ln(K)).
We thus observe that both bounds grow at the same asymptotic rate O(ln(K)) at large K , from which we conclude that

RK (p) itself must be growing at the same rate, as in [4]. Clearly we cannot assert that this conjecture holds at every value
of K ≥ 1. However, the average growth rate of RK (p) over an interval K ∈ [1, k] must be L(k, p) asymptotically as k → ∞;
if it were greater, the upper bound would eventually be violated, if it were smaller, the lower bound would be violated.
Consequently, knowing the value of R1(p), we may write

RK (p) ≈ α(p) ln(K)R1(p) + β(p), for K ≥ 1, (15)

where α(p) and β(p) are both functions of p, and are to be determined. Substituting K by 1 in Eq. (15), we find β(p) = R1(p).
To obtain α(p), we utilize the matrix analytic model, from which we obtain R1(p) for the single-node, and R2(p) for the
2-node FJ queues with the same arrival and service processes. Thus

R2(p) = α(p) ln(2)R1(p) + R1(p),

from which we obtain

α(p) =
R2(p) − R1(p)
ln(2)R1(p)

. (16)

Combining Eqs. (16), (15) and β(p), we obtain Eq. (13). �

We now provide an example to illustrate this approximation.
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Example 1. Weuse approximation (13) to compute the response-time’s 99th percentile in a 1024-node FJ queue (R1024(99)),
where the arrival and service rates are λ = 0.5 and µ = 1, respectively. To approximate R1024(99), we first need the per-
centiles R1(99) and R2(99) for the same setting. For a single-node queuewith λ = 0.5 andµ = 1, we obtain R1(99) = 9.215.
For the 2-node case, we rely on the analytical model presented in Section 4 to find R2(99) = 10.555, by setting C = 100.
Thus, following (13), R1024(99) is given by

R1024(99) ≈ R1(99) + (R2(99) − R1(99)) ln(K)/ ln(2) = 22.615,

while the result from simulation is 22.287, giving a relative error of 1.47%.
To further illustrate the approximation, we look at the behavior of the Gumbel distribution as an approximation of the

upper bound for this example. Fig. 2(a) shows the error in the response-time percentiles achieved using theGumbel distribu-
tion, against the actual maximum of the independent exponential random variables that define the upper bound.We depict
results for K = 1, 2, 32, 128 and 1024, for the 25th, 50th, and 75th percentiles, also known as the first three quartiles, and the
90th, 95th and 99th percentiles, representative of the tail. As expected, the response-time distribution of the upper bound
converges to the Gumbel distribution with increasing sample size, but the approximation for the tail is significantly more
accurate than for the body. For instance, for K = 1, the errors of the first three quartiles are 213.54%, 47.12%, and 10.13%,
while for the 90th, 95th and 99th percentiles they are 2.27%, 0.85%, and 0.11%, respectively. Since the approximation (14)
depends on the values of R1(p) and R2(p), we can expect EAT to provide accurate results for the tail of the distribution, even
if its accuracy is limited for the first three quartiles. This is also illustrated in Fig. 2(b), where we show the errors of EAT in
approximating the response-time percentiles RK (50), RK (99) for values of K between 4 and 1024. Clearly, the error in the
50th percentile is larger than in the 99th percentile, even though both are below 10%, and the latter surpasses 1% error for
the largest values of K only. Section 7 provides a thorough evaluation of the proposed approximation.

6.2. Asymptotic approximation for MAP arrivals and PH services

We now extend the preceding approximation for exponential service and inter arrival times to queues withMAP arrivals
and PH services. The proof in this case requires a more intricate analysis since the extreme value approximations for the
upper and lower bounds may have different normalizing constants.

Proposition 3. The pth response-time percentile RK (p) of a K-node homogeneous FJ queue with MAP arrivals and PH services is
given by

RK (p) ≈ R1(p) + (R2(p) − R1(p)) ln(K)/ ln(2), (17)

given the same growth rate conjecture as in Proposition 2.

Proof. The distribution of the maximum of i.i.d. random variables whose distributions are PH(τ, S) converges to the
Gumbel extreme-value distribution since they have exponential tails and so are Class I [23, Theorem 9]. However, different
PH representations converge to Gumbel distributions with different normalizing constants, where the two main cases
considered in [23] are:

• Case 1: if S is irreducible, the distribution of themaximumconverges to aGumbel distributionwith normalizing constants

aK = 1/η, bK = η−1 ln(Kc), (18)

where −η is the eigenvalue of S with largest real part, and c = τv, with v its right eigenvector.
• Case 2: if no two states in S communicate with each other, i.e., if S can be expressed as an upper-diagonal matrix, then

the distribution of the maximum converges to the Gumbel distribution with normalizing constants

aK = 1/η, bK = η−1 [ln(K) + (υ − 1) ln ln(K) − ln(υ − 1)! + ln(γ )] , (19)

where the parameters η, υ, γ are related to the set of paths from any initial state to the absorbing state, as described
in [23, Remark 10].

In the following we show that both upper and lower bounds of the response-time percentile RK (p) grow at a rate O(ln(K))
if the PH service-time distribution falls into either of these two cases.

As above, the response-time percentiles in the case that the parallel queues are independent provide upper bounds for
the K -node FJ queue. Each of these queues is then a MAP/PH/1 queue, the response-time of which follows a PH distribution
with parameters (α1

res, S
1
res), fromwhich the eigenvalue and eigenvector pair (ηu, vu) is obtained. To compute PH(α1

res, S
1
res),

we rely on the Q-MAM tool [24], which utilizes the age-process approach originally proposed in [13]. Moreover, from
[13, Lemma 2.5], we know that the matrix S1res is irreducible as long as the queue is stable. Hence we can use Eq. (12) and the
normalizing constants in Eq. (18) to obtain an approximation for the maximum X(K) of a set of K independent PH variables.
It follows that
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(a) Exp/Exp. (b) MAP/Exp. (c) Exp/HE2 .

Fig. 3. Errors (%) of approximation for RK (95).

FX(K)
(x) ≈ exp


− exp−(x−bK )/aK


= exp


− exp−(ηux−ln(Kcu))


= p,

where cu = α1
resv

u, so that the upper bound of Ru
K (p) has the form

Ru
K (p) ≈

ln(K)

ηu
+

ln(cu) − ln ln(1/p)
ηu

.

Therefore the upper bound of RK (p) grows at asymptotic rate O(ln(K)).
For the lower bound,we again ignore queueing delays, thus taking themaximumof the service time in the K queues, each

of which follows a PH distribution with parameters (αsubtask, Ssubtask). Different from the upper bound, where the matrix S1res
is always irreducible as long as the queue is stable, the matrix Ssubtask may fall into either of the 2 cases mentioned. Below
we show that, in either of these two cases, the lower bound of RK (p) grows at a rate O(ln(K)). In the case that Ssubtask is
irreducible, let −ηl be the eigenvalue with largest real part of Ssubtask, and v l its associated right eigenvector. Then the lower
bound of Ru

K (p) has the form

Rl
K (p) ≈

ln(K)

ηl
+

ln(c l) − ln ln(1/p)
ηl

,

which grows at the same rate O(ln(K)). If Ssubtask falls into case 2, e.g., the Ssubtask corresponds to an Erlang or hyper-
exponential distribution, the normalizing constants are given by Eq. (19), and it follows that the lower bound Rl

K (p) has
the form

Rl
K (p) ≈

[ln(K) + (υ − 1) ln ln(K)]
ηl

+
[− ln(υ − 1)! + ln(γ ) − ln ln(1/p)]

ηl
.

Thus the lower bound of RK (p) grows asymptotically at rate O(ln(K)), as the term ln ln(K) is dominated by ln(K) [25].
Consequently, we conclude that both bounds grow at the same rate O(ln(K)). Following a similar procedure to that for
queues with Poisson arrivals and exponential services, we obtain Eq. (17). �

7. Evaluating the EAT approximation

To evaluate the quality of the EAT approximation, we compare its results against simulation for a broad range of
system setups. For each setting, the response time percentiles and their 95% confidence intervals were obtained after 5000
simulations with 200,000 samples each time. We considered different utilization levels, service time distributions, and
arrival processes, following the same parametrization as in Section 4.5. To obtain the values for the K = 2 case, on which
EAT relies, we used C = 500 and 1000 to ensure accurate results.

Fig. 3 shows the relative error of RK (95) in cases with number of nodes K = 4, 32, 256, 1024 and at load levels of
0.1, 0.5 and 0.9. Fig. 3(a) considers exponential service times and Poisson arrivals, where we observe that EAT produces
accurate results, the error being as low as 4.17% for the most challenging case with K = 1024 at load 0.9. We also observe
that the error increases with the load, although the errors remain below 5%. Replacing the arrival process by a MAP, as
depicted in Fig. 3(b), we observe an increase in EAT’s errors, particularly at high utilization. Instead, replacing exponential
service times by hyper-exponential, Fig. 3(c) shows how the errors are actually smaller, staying under 2% even at large K .
This result suggests that EAT performs better with more variable service times, but worse with more variable inter-arrival
times.

Since MAP arrivals are the most challenging, Fig. 4 focuses on this case, fixing the utilization at 0.5 and considering
different response-time percentiles and service time distributions. Fig. 4(a) shows how the error increases with K , but
decreases with the percentile. In fact, the lowest errors are achieved for the 99th percentile, a result that is related to the
faster convergence of the Gumbel distribution for higher percentiles, as discussed in Section 6. If we replace the service-time
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(a) MAP/Exp. (b) MAP/HE2 . (c) MAP/ER2 .

Fig. 4. Errors (%) of approximation when U = 0.5.

distribution by a hyper-exponential, we observe a large reduction in the errors, which now remain under 3%. The opposite
effect occurs if Erlang service times are considered, as the errors increase to as much as 15%. We therefore observe that EAT
offers much better results under highly-variable service times, even under MAP arrivals. Low variability in the service times
appears more challenging for EAT, although the errors are remarkably small considering that we approximate cases as large
as K = 1024 with data from the cases K = 1 and K = 2 only.

8. Conclusion

We have proposed a stochastic model for K -node homogeneous FJ queues with phase-type processing times and MAP
arrivals. Instead of focusing only on the mean response-time, this model facilitates the estimation of the response-time
distribution and offers accurate results for small-scale FJ queues. For large-scale FJ queues, where the numerics of the
stochastic model become unviable, we proposed an efficient and scalable approximate approach, which only requires the
analytical results for a single-node and 2-node FJ queues. Tests against simulation show that the approximation gives a
high degree of accuracy for the response-time tails, so that, since mean values can be approximated by known methods,
these models cover the majority of response-time requirements in such queueing systems. Future work may consider
the extension of the model to consider heterogeneous servers. Also, the efficiency of the approximation makes it a good
candidate to support resource provisioning decisions in parallel computing frameworks.

Acknowledgments

The research presented in this paper has received funding from the Engineering and Physical Sciences Research
Council (EPSRC) under grant agreement No. EP/L00738X/1. The scripts implementing the methods in this paper are
available at http://www.mathworks.com/matlabcentral/fileexchange/51273-efficient-approximation-for-response-time-
tails-in-fork-join-queues.

Appendix A. Proof of Proposition 1

First notice that a job can only start service in the ms service phases with R(t) = K , since in other phases one or more
subtasks have already completed service, thus the 01×mnf ma vector in αservice corresponds to phases with R(t) < K . Now, if a
job finds at least one idle server, which occurs with probability 1 − γ , it initiates an all-busy period, and starts service with
phase according to π(0). On the other hand, a job finds all the servers busy with probability γ , and its starting phase is given
by the distribution of the phase in the (Xt ,Nt) process after a downward jump, as these are the times when new jobs start
service. We know that the joint distribution of the age and the phase is π(x). Further, thanks to the level-homogeneity of
the process, given that the age is x and the phase is i, the probability that the age reaches [x+ u, x+ u+ du) is independent
of x. Thus, the probability that level x is visited after a downward jump, and that this occurs by visiting phase j is given by
the jth entry of

c


∞

0


∞

0
π(x) exp(Tu)(A(jump)

⊗ exp(D0u)D1)dudx = cπ(0)(−T )−1(T − S(MAP)) = cαbusy(T − S(MAP)),

where the inner integral is equal to T − S(MAP) from (2), and c is a normalizing constant that is therefore given by c−1
=

αbusy(T −S(MAP))1. Thus, a job that waits starts service according to αbusy(T −S(MAP))/

αbusy(T − S(MAP))1


. Multiplying this

vector by the probability that a job has to wait γ , and adding it to the (1 − γ )π(0) term completes the result. �
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Appendix B. Proof of Theorem 1

Tobuild the PH representation of the response-timedistributionwe consider separately the paths of jobs that start service
immediately after arrival from those that must wait. As stated before, a job starts service without waiting with probability
1−γ , its initial service phase is given byπ(0), and the sub-generator associated to its service-time is Sservice. This is reflected
in the first set of phases in (8).

If a job has to wait, its response-time is composed of a first stage of waiting followed by a second stage of service. Further,
the phase in which the waiting stage ends determines the stage in which the service stage begins. Thus we need to keep
track of the phase in which the waiting-time concludes, and find the transition probabilities with which the service stage
starts given the phase in which the waiting stage ended. However, the PH representation of the waiting-time distribution
cannot be used directly for this purpose as it results from a time-reversal argument [13]. To overcome this, we find the
time-reversed version of the service-time distribution, and determine the probability that the time-reversed waiting-time
starts in each phase, given the final phase of the time-reversed service-time stage.

The PH representation of the time-reversed service-time distribution (αservice, Sservice) is given by [26]

S̃service = ∆−1S ′

service∆, α̃busy = (−Sservice1)′∆,

where ∆ is a diagonal matrix such that ∆1 = η′, and η = −αserviceS−1
service is the stationary distribution of the phase during

service. This distribution is such that its initial phase is actually given by the final phase of the original distribution, and vice
versa.

To find how the phase transitions from the end of the service stage to the beginning of the waiting stage, in the time-
reversed process, we observe that the joint probability that after a downward jump the level is at least x and the phase is j
is given by the jth entry of

W (x) =


∞

x
π(y)


∞

0
exp(Tu)A(MAP)(u)dudy,

as this expression considers the probability that any level greater than x is visited bymeans of a downward jump of any size
u. From (2) we know that the inner integral is equal to T − S(MAP), obtaining

W (x) =


∞

x
π(y)(T − S(MAP))dy = −π(0)T−1 exp(Tx)(T − S(MAP)) = αbusy exp(Tx)(T − S(MAP)).

Now we perform the same similarity transform as in [13] to obtain the PH representation of the waiting-time process. We
thus define a diagonal matrix Λ such that Λ1 = α′

busy to obtain

W (x) = αbusyΛ
−1Λ exp(Tx)Λ−1Λ(T − S(MAP)) = 1′ exp(S ′

waitx)Λ(T − S(MAP)) = (T − S(MAP))′Λ exp(Swaitx)1.

Notice that we use Swait = Λ−1T ′Λ, as in (5). We therefore have the standard representation for the sub-generator
of the waiting-time distribution, but the term (T − S(MAP))′Λ captures the transition from the final phase in the time-
reversed service process to the initial phase in the time-reversed waiting-time process. We now normalize this expression
by evaluating W (x) at x = 0, as in this case every entry of W (0) must be 1 since it considers every possible length of the
waiting-time process for each final phase of the time-reversed service process. We therefore find the diagonal matrix Γ

such that

Γ W (0) = Γ (T − S(MAP))′Λ1 = 1.

Notice that, from (2), T − S(MAP) is a non-negative matrix since T has non-zero diagonal elements [13]. Thus, from the
definition ofΓ , thematrix P̃s,w = Γ −1(T −S)′Λ is a stochasticmatrix. This leads to the second and third blocks in (8), where
the response-time process starts with the time-reversed service process, with parameters (α̃busy, S̃service). After the service
completes, the waiting-time process starts, selecting the initial phase of the time-reversed waiting process according to the
matrix Ps,w . Notice that absorption from the service-time process can only occur in its first m phases, which correspond
to the full set of phases defined in Section 4.2. The matrix P̃s,w corresponds to this m phases. The process then continues
according to the sub-generator Swait until absorption. �

Appendix C. Example

This appendix illustrates the different matrices required in the proposed model with a small example. We consider a FJ
queue with K = 3 and C = 2. In this case, the matrices S and A(jump) are given by
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(1,0,2) (1,1,1) (1,2,0) (2,0,1) (2,1,0) (3,0,0)

(1,0,2) −3µ 2µ 0 0 0 0
(1,1,1) 0 −3µ µ µ 0 0
(1,2,0) 0 0 −3µ 0 2µ 0
(2,0,1) 0 0 0 −3µ µ 0
(2,1,0) 0 0 0 0 −3µ µ
(3,0,0) 0 0 0 0 0 −3µ

,



(1,0,2) (1,1,1) (1,2,0) (2,0,1) (2,1,0) (3,0,0)

(1,0,2) µ 0 0 0 0 0
(1,1,1) µ 0 0 0 0 0
(1,2,0) µ 0 0 0 0 0
(2,0,1) 0 2µ 0 0 0 0
(2,1,0) 0 2µ 0 0 0 0
(3,0,0) 0 0 3µ 0 0 0

.

In this example, the Snot-all-busy matrix is given by

Snot-all-busy =



(1,0,2) (1,1,1) (1,2,0) (2,0,1) (2,1,0) (3,0,0)

(1,0,2) −2µ 2µ 0 0 0 0
(1,1,1) 0 −2µ µ µ 0 0
(1,2,0) 0 0 −2µ 0 2µ 0
(2,0,1) 0 0 0 −µ µ 0
(2,1,0) 0 0 0 0 −µ µ
(3,0,0) 0 0 0 0 0 0

.

Finally, the matrices Sfull-(not-full) and S(not-full)-(not-full) are respectively given by



(2,(1,0,2)) (2,(1,1,1)) (2,(1,2,0)) (1,(2,0,1)) (1,(2,1,0))

(3,(1,0,2)) µ 0 0 0 0
(3,(1,1,1)) µ 0 0 0 0
(3,(1,2,0)) µ 0 0 0 0
(3,(2,0,1)) 0 2µ 0 0 0
(3,(2,1,0)) 0 2µ 0 0 0
(3,(3,0,0)) 0 0 3µ 0 0

,


(2,(1,0,2)) (2,(1,1,1)) (2,(1,2,0)) (1,(2,0,1)) (1,(2,1,0))

(2,(1,0,2)) −2µ 2µ 0 0 0
(2,(1,1,1)) 0 −2µ µ µ 0
(2,(1,2,0)) 0 0 −2µ 0 2µ
(1,(2,0,1)) 0 0 0 −µ µ
(1,(2,1,0)) 0 0 0 0 −µ

.
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