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Abstract—Computing clusters (CC) are a cost-effective high-

performance platform for computation-intensive scientific and

engineering applications. A key challenge in managing CCs is

to consistently achieve low response times. In particular, tail-

tolerant methods aim to keep the tail of the response-time

distribution short. In this paper we explore concurrent replication

with canceling, a tail-tolerant approach that involves processing

requests and their replicas concurrently, retrieving the result

from the first replica that completes, and canceling all other

replicas. We propose a stochastic model that considers any

number of replicas, general processing and inter-arrival times,

and computes the response time distribution. We show that

replication can be very effective in keeping the response-time

tail short, but these benefits highly depend on the processing-time

distribution, as well as on the CC utilization and the statistical

characteristics of the arrival process. We also exploit the model

to support the selection of the optimal number of replicas, and a

resource provisioning strategy that meets service-level objectives

on the response-time percentiles.

I. INTRODUCTION

Computing clusters (CC) have become a cost-effective high-
performance platform for computation-intensive scientific and
engineering applications [1], [2]. A CC consists of a set of
processing elements interconnected by a high-speed commu-
nication network, providing computing services to multiple
users. A key challenge in managing CCs is to consistently
achieve low response times, or latency, especially to keep the
tail of the latency distribution short. For instance, experiments
of Google show that a system where each request typically
responds in 1ms, has a 99-th percentile latency of 10ms [3].
High latency can be caused by a number of reasons, includ-
ing contention for shared resources, queueing, or hardware
problems [3]. Keeping latency low is critical, since even a
small amount of delay may significantly degrade the system
perceived quality of service. For instance, the traffic and
revenue of Google searches has been observed to decrease
by 20% when introducing a 500ms delay [4].

To address this problem we consider concurrent replication
with canceling: initiate multiple replicas of a request, use
the result from the replica that responds first, and cancel
all the other replicas. As the overall latency becomes the
minimum of the delays across all the replicas, it can potentially
reduce both the mean and the tail of the latency distribution,
especially since the source of latency is often due to external
interference, rather than inherent to the requests [3]. Further,

concurrent replication can also handle unpredictable delays
due to exceptional conditions, unless they occur to all replicas
simultaneously [5]. Heavy concurrent replication is appealing
given the common observation that most clusters are highly
underutilized, with the average utilization of major data center
servers being around 18% [6]. However, concurrent replica-
tion may introduce unacceptable additional load, leading to
excessive resource usage, degrading the offered response times
(RTs). This additional load can be limited by the canceling
mechanism [3], which requires the servers to share updates
on the status of their replicas. In this paper, we evaluate the
effectiveness of concurrent replication with canceling as a
tail-tolerant mechanism, that is, it ability to reduce latency,
especially the tail of the latency distribution.

A. Contributions

The main contribution of this paper is the introduction of an
analytical model to compute the RT distribution offered by a
CC implementing concurrent replication with canceling. The
key aspects of the model are: i) it considers any number of
replicas, enabling the evaluation of different replication levels;
ii) it accepts fairly general request processing times, which is
necessary to capture the variability observed in CCs [7]; iii)
it considers general inter-arrival times (IATs), capturing both
high variability and auto-correlation; iv) it computes the RT
distribution, which is necessary to analyze the latency tail,
as well as to evaluate service-level objectives (SLOs) defined
as RT percentiles. The model, introduced in Sections IV
and V, goes beyond existing proposals [5], [8], [9], which
focus on a single additional replica, and assume exponential
processing times that rarely fit real data. We exploit the model
to show that replication can be very effective in keeping the
latency tail short, but these benefits highly depend on the
processing-time distribution, as well as on the CC utilization
and the statistical characteristics of the arrival process. In
Sections VII and VI, we use the proposed model to determine
optimal replication levels, and for an SLO-driven resource
provisioning strategy. The results highlight that ignoring either
the variability and correlation in the arrival process, or the
variability in the processing times, may lead to large SLO
violations, or wasteful over-provisioning.
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II. RELATED WORK

Concurrent replication has been considered in [5], [6], [10]
to reduce latency for interactive and latency-sensitive applica-
tions. Trace-driven simulations in [10] show that processing
replicas simultaneously is effective in keeping the tail of
the latency distribution short. [5] derives the utilization level
below which replication helps to improve the mean RT, for a
CC with Poisson arrivals and exponential service times, and
provide approximate upper bounds for more general services.
The canceling mechanism has been considered in [3], [8],
[9], [11] to limit the additional load introduced by replicas.
[3] observes that adopting replication with canceling in a
benchmark experiment reduces the latency substantially, while
introducing only a slight additional load. Simulation results
for the average latency are presented in [11] for a CC with
exponential, light-everywhere, and heavy-everywhere service-
time distributions. [8], [9] propose stochastic models to derive
the mean RT obtained with one additional replica, for the case
of two servers with independent queues in [8], and for the case
of synchronous parallel processors in [9].

III. BACKGROUND

A. Reference model

We consider a system consisting of a central dispatcher
and c distributed, homogeneous, and independent servers.
Requests arrive at the dispatcher and join the next server
that becomes available with first-come first-served (FCFS)
scheduling. For each arriving request, r � 1 replicas are
initiated and submitted to the system, where r = 1 represents
the case without replication. The set of replicas for a single
request is referred to as a job, and the number of replicas r

is also called the job size. To reduce unnecessary workload,
servers communicate updates on the status of their replicas
to each other, such that, when a replica completes execution,
it immediately cancels all the other replicas in the same job.
The removal of all the replicas in a job may require a non-
negligible time, which we refer to as the canceling overhead.
In the model introduced in the next sections we assume
zero canceling overhead, but in Section VI we modify the
model to explicitly consider overheads of different magnitudes,
compared to the job processing times.

For the sake of clarity, we will introduce the model in two
steps. First, we consider the basic case, where we assume that
the number of servers c is a multiple of the job size r, i.e.,

TABLE I: Notation
Parameter Definition

c Number of servers
r Job size: number of replicas
cA Number of super-servers, cA = c/r

MAP(D0, D1) Arrival process with ma phases
� Mean arrival rate

PH(↵R, SR) Replica processing time PH dist.

PH(↵i, Si)
Job service-time PH dist. with di service phases
i=J for the basic case, i=F for the general case

PH(↵w, Sw) Job waiting-time PH dist.
PH(↵res, Sres) Job response-time PH dist.

Qi,⇧i
Transition rates with or without a service completion,
i=A for the basic case, i=P for the general case

� Probability that a job has to wait upon arrival
es A zero vector with a 1 in its s-th element

Ni

Set of service phases (cardinality di).
i=S for all jobs in service, i=Y for the youngest job,
i=N , initial phases of replicas remaining in the queue

In Identity matrix of size n
SCV Squared coefficient of variation

c = nr for n 2 N. In this case the analysis simplifies because
all the requests in a job start and complete service at the same
time. Figure 1(a) illustrates this for the case c = 4 and r = 2.
For instance, the completion of a replica in either job A or B
triggers the completion of the corresponding job, and all the
replicas in job C start service at the same time. Thereafter,
we consider the general case, where no restrictions are posed
on the number of servers. In this case, a job may start service
in either of two states: with all its replicas at the same time
(denoted as state A, which is short for all); or with only part
of its replicas, while the remaining ones wait in the queue
(denoted as state P , which is short for part). An example of
this is depicted in Figure 1(b), for the case c = 3 and r = 2.
Here jobs A and B are in service, but job B has one replica
waiting in the queue. This replica will only start service once
job A completes, and it may not start at all if the replica of job
B already in service finishes before job A. The more complex
dynamics present in this case will be considered in Section V.

In the next sections we propose a model to evaluate the
performance of a CC adopting replication with canceling.
Table I summarizes the notation used in the model. The
model proposed assumes that the replicas of a request are
independent. Although the replicas may be correlated in
general, recent experiments [5] show that the independent
approximation is reasonable when the number of servers is
sufficiently large. For instance, the mean RT obtained under
the independent assumption is within 0.1% of the value
observed in the experiments with 20 servers.

B. Phase-type distributions

To be able to analyze a broad range of behaviors for the
replica processing times, we will rely on Phase-type (PH)
distributions. In fact, PH distributions are dense in the set of all
positive-valued distributions, thus being able to approximate
general distribution [12]. PH distributions are also popular
for maintaining some of the analytical tractability of the
exponential distribution. A PH random variable X represents
the absorption time in a Markov Chain (MC) with n + 1



states, where the states {1, . . . , n} are transient and state 0
is absorbing [12]. Let ⌧ be the 1⇥n vector of the MC initial
probability distribution for the transient states, and let S be
the n ⇥ n sub-generator matrix holding the transition rates
among the transient states. We denote this random variable
or its distribution as PH(⌧ , S). The vector S

⇤ = �S1 holds
the absorption rates from the transient states, where 1 denotes
a column vector of ones. Its cumulative distribution function
(CDF) is given by F (x) = 1�⌧exp(Sx)1, for x � 0, and its
expected value is E[X] = �⌧S�11.

C. Markovian Arrival Processes

Motivated by the high variability in the inter-arrival times
(IATs) observed in CCs [7], we model the request arrival pro-
cess as a Markovian Arrival Process (MAP). The continuous-
time MAP [12] is a marked MC with m

a

states, or arrival
phases, and generator matrix D = D0 + D1. The transition
rates not associated with arrivals are held in D0, while the
rates that trigger new arrivals are kept in D1. The diag-
onal entries of D0 hold the total exit rate in each state,
such that (D0 + D1)1 = 0. We denote this process as
MAP(m

a

, D0, D1). The mean arrival rate is
� = dD11, (1)

where d is the stationary distribution of the underlying MC,
i.e. dD = 0 and d1 = 1. A renewal process with PH(⌧ , S)
IATs can be modeled as a MAP, by setting D0 = S and
D1 = S

⇤
⌧ . Compared to traditional Poisson arrivals, a MAP

is able to represent more general IATs, including features such
as high variability and auto-correlation.

IV. THE BASIC CASE

In this section we focus on the basic case, where the
number of servers c is a multiple of the number of replicas
r, as in Figure 1(a). We obtain the RT distribution for this
case by relying on [13], where the PH representation of the
waiting-time distribution is obtained for the MAP/PH/c queue.
The case without replication, i.e., when r = 1, is in fact a
MAP/PH/c queue, so we can readily use [13] to obtain the
waiting-time distribution, and combine it with the service-time
distribution to obtain the RT distribution, as in Section IV-C.
The case with replication requires a more detailed analysis
to capture the dynamics introduced by the replication and
canceling. In the following we refer to a period during which
all the servers are busy as an all-busy period, and to a period
where at least one server is idle as a not-all-busy period. We
assume that the distribution of the replica processing times
is PH(↵

R

, S

R

), and a key step in the following analysis
is showing that the job processing times also follow a PH
distribution, with parameters (↵

J

, S

J

) that depend on the
overall system state.

A. The service-time distribution

As mentioned before, in the basic case all the replicas in a
job start service at the same time, and terminate when either
of the replicas completes service. As a result we can aggregate
the servers into c

A

= c/r “super-servers”, letting each job be

processed by a single super-server. We thus need to describe
the job service-time as a PH distribution, which is possible
since the job service time is in this case the minimum of the
replicas service time, and PH distributions are closed under the
minimum operation [12]. Since the replicas are homogeneous,
instead of recording the service phase of each replica, it
suffices to count the number of replicas in each service phase.
The service time of a job then follows a PH distribution with
representation (↵

J

, S

J

), with service phases N

J

= {x
J

=
(x

J

(1), . . . , x
J

(m))|x
J

(i) 2 {0, . . . , r},
P

m

i=1 xJ

(i) = r},
where x

J

(i) is the number of replicas in the i-th service phase,
for 1  i  m. The number of job service phases is thus

d

J

=

✓
m+ r � 1

r

◆
.

The initial distribution of the job service phase ↵

J

follows a
multinomial distribution, as each replica picks its initial phase
independently. The probability that a job starts service in phase
x

J

is thus

↵

J

(x
J

) = r!
mY

i=1

↵

R

(i)xJ (i)

x

J

(i)!
, x

J

2 N

J

. (2)

Let e
s

be a zero vector with a 1 in its s-th element, such that
a job goes from service phase x

J

to phase x

J

+e

i

�e

j

when
a replica jumps from the j-th phase to the i-th. The elements
of the matrix S

J

, are thus given by S

J

(x
J

,x

J

+ e

i

� e

j

) =
x

J

(j)S
R

(j, i), as in this case one of the x

J

(j) replicas in the
j-th service phase jumps to the i-th with rate S

R

(j, i).
As an example, consider the case where the replica service-

time distribution has m = 2 phases and sub-generator matrix

[S
R

|S⇤
R

] =

1 2 C✓ ◆
1 �2 2 0
2 0 �2 2

, (3)

where C is the absorbing phase, and the vector S

⇤
R

= �S
R

1
holds the absorbing rates into phase C. Assuming r = 2 repli-
cas, the job service phases are N

J

= {(2, 0), (1, 1), (0, 2)},
and its sub-generator matrix S

J

is

[S
J

|S⇤
J

] =

(2,0) (1,1) (0,2) C

 !
(2,0) �4 4 0 0
(1,1) 0 �4 2 2
(0,2) 0 0 �4 4

,

where S

⇤
J

= �S
J

1. For instance, in job phase (2, 0) either
of the 2 replicas in the first phase could jump to the second
phase with rate S

R

(1, 2) = 2, thus S

J

((2, 0), (1, 1)) = 4.

B. The waiting-time distribution

The waiting time of a job is the time period between its
arrival and the time its service starts. By aggregating the
c servers into c

A

= c/r super-servers and looking at the
job level, we can compute the waiting-time distribution for
the basic case using the approach in [13], as we have a
MAP/PH/c

A

queue with PH(↵
J

, S

J

) service times. Here we
detail some of the steps in [13] as we will need to treat them
in more detail for the general case.

The waiting-time distribution is obtained by observing the



queue only during the all-busy periods, and defining a bi-
variate Markov process {X(t), J(t)|t � 0}. The age process
X(t) is the total time-in-system of the youngest job in service,
and the phase process J(t) = (M(t), S(t)), holds the phases
of both the MAP arrival process M(t) and the service process
S(t). The age process {X(t)|t � 0} takes values in [0,1),
increasing linearly with rate 1 if no job service completions
occur. A downward jump occurs when a service completion
triggers the start of a new job service, and the value of the
age process after the jump is equal to the waiting time of the
job starting service.

As we aggregate the servers in c

A

super-servers, the variable
S(t) records the phases in which the c

A

jobs in service are.
The set of possible service phases of all the jobs in service is
N

S

= {x
S

2 N1⇥dJ |x
S

(i) 2 {0, . . . , c
A

},
P

i2NJ

x

S

(i) = c

A

},

where N1⇥dJ is a 1⇥d

J

vector of natural numbers, and x

S

(i)
is the number of jobs in service phase i, for i 2 N

J

. The
bold index i here represent the job service phase i, which is
a vector, and is different from the scalar indexes used before
for the replica service phase. The cardinality of N

S

is

d

S

=

✓
d

J

+ c

A

� 1
c

A

◆
.

The dimension of the full phase process J(t) = (M(t), S(t))
is thus m

a

d

S

.
Let the 1⇥m

a

d

S

vector ⇡(x) hold the steady-state density
of {X(t), J(t)}. The entry (i, j) of ⇡(x) is the probability
measure at age x � 0, phase i 2 {1, . . . ,m

a

} and j 2
N

S

. This measure has been shown [13] to have a matrix-
exponential form such that

⇡(x) = ⇡(0)exp(Tx).

Further, the matrix T can be found by solving the non-linear
integral equation [13], [14]

T = Q

(MAP )
A

+

1Z

0

exp{Tt}(exp{D0t}⌦ I

dS )dt(D1 ⌦⇧
A

), (4)

where I

n

is the identity matrix of size n, and ⌦ denotes the
Kronecker product. Here Q

(MAP )
A

= I

ma ⌦ Q

A

, with Q

A

a
d

S

⇥d
S

matrix whose off-diagonal elements hold the transition
rates between the service phases N

S

not associated with a
service completion. Also, ⇧

A

is a d

S

⇥d
S

matrix that holds the
transition rates between the service phases N

S

accompanied
by a service completion, during an all-busy period.

The elements of Q
A

and ⇧
A

can be obtained by considering
the transitions from service phase x

S

to phase x

S

+ ei � ej ,
for each phase x

S

2 N

S

, and i, j 2 N

J

. Here the vector ei

is a zero vector of size d

J

, indexed by N

J

, with a 1 in the
entry that corresponds to service phase i. Recall that in this
case x

S

describes the status of all the jobs in service. Thus
the entry Q

A

(x
S

,x

S

+ ei � ej) is given by x

S

(j)S
J

(j, i),
where one of the x

S

(j) jobs in service phase j jumps to phase
i with rate S

J

(j, i). Also, the element ⇧
A

(x
S

,x

S

+ei�ej)
is given by x

S

(j)S⇤
J

(j)↵
J

(i), where one of the x

S

(j) jobs
in service phase j terminates with rate S

⇤
J

(j), and a new job
starts service in phase i with probability ↵

J

(i).
As in [13], [14], Eq. (4) can be solved iteratively. However,

different from the numerical integration used in [13], we
follow the approach as described in [15]. Once T has been
found, a few more steps are needed, such as finding the vector
⇡(0), as described in [13]. Here we recall the computation of
the probability � that a job finds all servers busy and needs to
wait. Let ⌘0 be the number of service completions in an all-
busy period, and ⌘1 the number of arrivals in a not-all-busy
period, where their expected values E[⌘0] and E[⌘1] can be
obtained as in [13, Section 6]. Thus the probability that a job
has to wait is � = (E[⌘0] � 1)/(E[⌘0] � 1 + E[⌘1]) since
E[⌘0]� 1 is the expected number of jobs that have to wait.

We can now determine the waiting-time distribution PH(↵
w

,
S

w

). Letting ' = (T �Q

(MAP )
A

)1 and ↵ = �⇡(0)T�1, the
initial probability vector ↵

w

is given by

↵

w

(i) = �

↵(i)'(i)

↵'

, 1  i  m

a

d

S

.

And the elements of the matrix S

w

are given by

S

w

(i, j) =
↵

w

(j)T (j, i)

↵

w

(i)
, 1  i, j  m

a

d

S

.

C. The response-time distribution

Given the PH representations of waiting and service times,
the PH representation (↵res, Sres) of the RT distribution is

↵res = [↵
w

(1�↵

w

1)↵
J

],

Sres =


S

w

(�S
w

1)↵
J

0
madS⇥dJ S

J

�
,

where 0
m⇥n

denotes an m⇥n zero matrix. With this represen-
tation we can compute the CDF, percentiles, and moments.

V. THE GENERAL CASE

In this section, we obtain the RT distribution for the general
case, where the number of servers c is not necessarily a
multiple of the number of replicas r. In this case, during the
all-busy period there are c

A

= bc/rc jobs in service with all
the replicas in service, i.e., in state A, where bac is the largest
integer smaller than or equal to a. In addition, the youngest
job in service is always in state P, with p = (c mod r) replicas
in service and the remaining r� p replicas waiting in front of
the queue. Instead, during a not-all-busy period, all the jobs in
service are in state A. This therefore affects the service-time
and waiting-time distributions, as described next.

A. The service-time distribution

When a job starts service during an all-busy period, it does
so in state P as the youngest job in service. We thus introduce
Y (t) to keep track of the service phase of the youngest job in
service at time t. Y (t) takes values in the set N

Y

= {x
Y

=
(x

Y

(1), . . . , x
Y

(m))|x
Y

(i) 2 {0, . . . , p},
P

m

i=1 xY

(i) = p},
where x

Y

(i) is the number of replicas in the i-th service phase,
for 1  i  m. The cardinality of N

Y

is

d

Y

=

✓
m+ p� 1

p

◆
.

The youngest job can complete service if any of its p replicas
in service completes service. Otherwise, when one of the c

A

jobs in state A completes service, the r � p replicas of the
youngest job waiting in the queue start service, and the job



jumps to state A. Thus, for the youngest job in state P, whether
it completes service or jumps to state A, depends not only on
the service phase of the job itself, but also on the phase of
all the jobs in service in state A. Therefore, to describe the
job service-time distribution it is essential to keep track of the
service phase of all the jobs in service, while the job is in
state P. Once it switches from state P to state A, its service
time depends solely on the state of its own replicas.

With the previous considerations, we define PH(↵
F

, S

F

),
the job service-time distribution. As a job may be in either
state A or P, we partition the sub-generator S

F

as

S

F

=


S

A,A

0
dJ⇥dF

S

P,A

S

P,P

�
. (5)

The S

A,A

matrix holds the transition rates without a service
completion for a job in state A. The service-time distribution
of a job in state A was defined in Section IV, thus S

A,A

= S

J

,
which is a d

J

⇥ d

J

matrix. Similarly, the matrix S

P,P

holds
the transition rates without a service completion when the
job is in state P. As stated above, when the job is in state
P we need to keep track of (S(t), Y (t)), where Y (t) holds
the service phase of the job in state P, while S(t) holds
the service phase of all the jobs in state A. The set of
service phases in this case is thus the product of the two
sets, N

F

= N

S

⇥ N

Y

, and its cardinality is d

F

= d

S

d

Y

.
As as example, consider the case r = 2, m = 2, and c = 3,
depicted in Figure 1(b). During an all-busy period, one of the
two jobs in service is in state A, while the youngest job is
in state P with 1 replica in service. The combined phases of
jobs in service are N

S

⇥N
Y

= {((1,0,0), (1,0)), ((1,0,0),(0,1)),
((0,1,0),(1,0)),((0,1,0),(0,1)), ((0,0,1),(1,0)), ((0,0,1),(0,1))}.

The elements of the d

F

⇥ d

F

matrix S

P,P

cover two cases.
In phase (x

S

,x

Y

), one of the x

S

(j) jobs in state A, service
phase j, may jump to service phase i without a service
completion with rate S

J

(j, i), thus S
P,P

((x
S

,x

Y

), (x
S

+ei�
ej ,xY

)) = x

S

(j)S
J

(j, i), for i, j 2 N

J

. Also, in phase
(x

S

,x

Y

), one of the x

Y

(j) replicas of the youngest job in
the j-th service phase may jump to the i-th without completing
service with rate S

R

(j, i), making S

P,P

((x
S

,x

Y

), (x
S

,x

Y

+
e

i

� e

j

)) = x

Y

(j)S
R

(j, i), for 1  i, j  m.
Finally, the matrix S

P,A

holds the transition rates with
which the youngest job in state P enters state A. When the
job in state P jumps to state A, its initial service phase in state
A is the combination of the current phase of its p replicas in
service, and the starting phase of its remaining replicas in the
queue. Let x

N

be a 1⇥m vector where the entry x

N

(i) is the
number of replicas starting service in phase i, out of the r�p

replicas waiting in the queue. All possible vectors of this type
are in the set N

N

= {x
N

= (x
N

(1), . . . , x
N

(m))|x
N

(i) 2
{0, . . . , r � p},

P
m

i=1 xN

(i) = r � p}, and the probability
↵

N

(x
N

) of the r � p replicas starting in phases x

N

can
be computed with Eq. (2), replacing r by r � p, and x

J

by
x

N

. Then, in phase (x
S

,x

Y

), where the youngest job is in
phase x

Y

2 N

Y

, if its waiting replicas start service in phase
x

N

2 N

N

, the job jumps to service phase (x
Y

+ x

N

) 2 N

J

.
Thus the elements of the d

F

⇥ d

J

matrix S

P,A

are given by

S

P,A

((x
S

,x

Y

), ej) = x

S

(i)S⇤
J

(i)↵
N

(x
N

), as in this case
one of the x

S

(i) jobs in state A, phase i 2 N

J

completes
service, and the job in state P jumps to state A, phase
j = (x

Y

+ x

N

).
To determine the initial probability vector ↵

F

of the job
service process, we consider jobs starting service in state A
and P separately. During the all-busy period, every job starts
service in state P, while in the not-all-busy period, all jobs start
service in state A except for the arrival that initiates an all-busy
period. As described in Section IV-C, E[⌘0] is the expected
number of job service completions during an all busy period,
so it is equal to the expected number of arrivals during such
a period, all of which start service in phase P. Also, E[⌘1]
is the expected number of arrivals during a not-all-busy, all
of which, but one, start service in phase A. As a result, the
probability p

A

that a job starts service in state A is given by
(E[⌘1]�1)/(E[⌘1]�1+E[⌘0]). The initial probability vector
↵

F

is thus
↵

F

= [↵
A

↵

P

] = [p
A

↵

J

(1� p

A

)↵
Y

]. (6)

B. The waiting-time distribution

As in Section IV, to find the PH(↵
w

, S

w

) waiting-time
distribution we need to find the matrix T , solving Eq. (4).
Apart from changing the identity matrix I

dS to I

dF , we must
specify the d

F

⇥ d

F

matrices Q

P

and ⇧
P

, which replace
Q

A

and ⇧
A

, respectively, in the general case. As the matrix
Q

P

holds the transition rates among the service phases N

F

without triggering a service completion during an all-busy
period, this is simply equal to S

P,P

. The matrix ⇧
P

, instead,
holds the transition rates among the phases N

F

associated
with a service completion during the all-busy period, which
can derive from two cases. In the case the job in state P
completes service, all its replicas, including the ones waiting
in the queue, are canceled immediately, and the next job
in the queue starts service in state P. Thus the element
⇧

P

((x
S

,x

Y

), (x
S

,x

K

)) is given by x

Y

(i)S⇤
R

(i)↵
Y

(x
K

), for
x

S

2 N

S

and x

Y

,x

K

2 N

Y

, as any of the x

Y

(i) replicas of
the youngest job in the i-th service phase completes service
with rate S

⇤
R

(i), and a new job starts service in state P and
phase x

K

with probability ↵

Y

(x
K

). Similarly, when a job
in state A completes service, the associated elements of the
matrix ⇧

P

are given by ⇧
P

((x
S

,x

Y

), (x
S

�ei+ej ,xK

)) =
x

S

(i)S⇤
J

(i)↵
N

(x
N

)↵
Y

(x
K

), as any of the x

S

(i) jobs in state
A, phase i 2 N

J

completes service, and the job that was in
state P, jumps to state A, phase j = (x

Y

+ x

N

). In addition,
a new job starts service in phase x

K

2 N

Y

. We can now
follow the same steps as in Section IV to find the waiting-
time distribution PH(↵

w

, S

w

).

C. The response-time distribution

As in Section IV, the PH representation of the RT distribu-
tion under the general case is given by

↵res = [↵
w

(1�↵

w

1)↵
F

],

Sres =


S

w

(�S
w

1)↵
F

0
madS⇥dF S

F

�
.
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D. Utilization

The utilization U is the expected fraction of the time that a
server is busy, which can be computed as

U = (E[r]�)/(cµ), (7)
where E[r] is the expected number of servers used by a job,
the mean arrival rate � is defined in Eq. (1), and the job mean
service rate µ is given by µ = ↵

J

(�S
J

)�11. In the basic
case, all jobs start and complete service in state A, thus E[r] =
r. Instead, in the general case, jobs may finish service using
either r or p replicas depending on whether they complete
service in state A or P. This can be determined by relying
on the service-time distribution PH(↵

F

, S

F

), as defined in (5)
and (6). Let S

⇤
P,C

be the vector holding the absorption, or
service completion, rates for a job in state P, which is given
by S

⇤
P,C

= �(S
P,A

+ S

P,P

)1. Thus the probability p

P,C

that
a job completes service in state P, is given by

p

P,C

= ↵

P

(�S
P,P

)�1
S

⇤
P,C

,

which captures the path of a job that starts service in state
P with initial probability vector ↵

P

, and then spends some
time in state P before eventually completing service, being
absorbed in phase C with probability vector (�S

P,P

)�1
S

⇤
P,C

.
Thus the expected number of servers a job uses is given by

E[r] = r � p

P,C

(r � p),

since every job uses r servers, except those that, with proba-
bility p

P,C

, use p servers only.

VI. EXPERIMENTAL ASSESSMENT

We now make use of the proposed model to evaluate the
effect of different parameters on the offered RTs. Thanks to the
flexibility offered by the model, we consider arrival processes
with exponential (Exp), 2-phase Erlang (ER2), and 2-phase
hyper-exponential (HE2) inter-arrival times (IATs), as well
as 2-phase MAPs (MAP). We thus cover a broad range of
behaviors in terms of variability, measured by the squared
coefficient of variation (SCV), defined for a random variable
X as C

2
X

= V ar[X]/E[X]2. The SCV for ER2 and Exp is
0.5 and 1, respectively, while the HE2 covers the cases with
SCV greater than 1. We use the methods in [16], [17] to obtain
the ER2, HE2 and MAP representations. For the service-time
distribution, we also consider Exp, ER2 and HE2 distributions.
The mean service rate µ is set to 1, while the arrival rate is
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Fig. 3: Service time PDF and RT CCDF

set to achieve a target utilization U = �/cµ for the system
without replication (NR-utilization).

A. The effect of canceling

To evaluate the effectiveness of canceling, we compare the
RTs obtained with and without canceling, using 2 replicas
as an example. We consider an instance with HE2 arrivals
(SCV = 10), ER2 services, and 20 servers. We first consider
a relatively low NR-utilization of 0.25, and then increase
it to 0.4, which ensures that the case with replication and
canceling is stable. The results without canceling are obtained
with a simulation model, as this is not the focus of the
model introduced in this paper. Figure 2 depicts the RT
complementary CDF (CCDF) offered by the systems without
replication (NR), with canceling (C), and without canceling
(NC). We observe that under the relatively low NR-utilization
case (0.25), the RT CCDFs of both replication approaches
are very similar, with the one of the case with canceling
being slightly smaller. In both replication cases, the tails are
much shorter than without replication. The reduction in RTs is
caused by the introduction of replicas as it allows the selection
of the first replica that completes service. In this case, the
0.25 NR-utilization becomes 0.31 and 0.50 after introducing
one extra replica, with and without canceling, respectively.
However, when the NR-utilization increases to 0.4, as shown
in Figure 2(b), the utilization in the case without canceling
increases to 0.81, leading to a much longer tail and a RT
that is even larger than the one obtained without replication.
Instead, the RT obtained with canceling only increases the
utilization to 0.5, causing the RT to be much smaller than the
one without canceling. The canceling mechanism thus limits
the additional load introduced by the replicas,improving the
benefits of replication for latency-tolerance.
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B. The effect of the service-time distribution

We now illustrate the impact of the service-time distribution
on the system performance, as measured by the RT. We focus
on the value x such that P (RT  x) = 0.9999, labeled
RT99.99, but similar results hold for other values of the RT
distribution. As a reference, Figure 3(a) compares the probabil-
ity density functions (PDFs) of the service-time distributions
considered, where we see that the HE2 distribution (SCV = 10)
has the longest tail while the ER2 has the shortest. Also, HE2

has the highest probability of having short service times while
ER2 has the lowest. Assuming 20 servers, Exp arrivals, an NR-
utilization of 0.1, and 2 replicas, Figure 3(b) shows how the RT
CCDFs have a similar trend as the service times, with ER2 and
HE2 having the shortest and longest tails, respectively. When
the number of replicas increases to 5, as in Figure 3(c), the RT
tail shrinks for all service-time distributions, but this change is
largest for HE2 services, which offers the shortest tail. This is
further reinforced when the number of replicas increases to 10,
as in Figure 3(d), where the tail under ER2 services becomes
the longest, and the order is reversed compared to the 2-replica
case. The advantage of the HE2 distribution lies on its larger
proportion of small jobs. Since the replication mechanism
allows the selection of the first replica that completes service,
a larger number of replicas increases the probability that a job
benefits from at least one of its replicas having a short service
time. Replication with canceling is thus more effective if the
probability of a short service time is non-negligible. Highly
concentrated processing time distributions, like the ER2, offer
less chances to gain from replication.

C. The effect of the number of replicas and the utilization

We now consider a scenario with 20 servers, starting with
a relatively low NR-utilization of 0.2. Figure 4(a) depicts
the RT99.99 obtained under three service-time distributions,
varying the number of replicas between 1 and 20. We observe
that, under Exp and HE2 (SCV = 10) services, the RT99.99
decreases consistently as the number of replicas increases,
achieving the lowest RT99.99 when the number of replicas
equals the number of servers. Instead, for ER2 services, the
RT99.99 decreases until the number of replicas reaches 8, and
increases afterward. These different behaviors arise from the
limited advantage that can be gained from replication under
ER2, as service times are highly concentrated. Instead, for
Exp and HE2 services, the larger number of replicas increases
the probability of having a short job service time. Notice that
having more replicas than servers offers no benefit, as at most
c replicas can start service at the same time.

When the NR-utilization increases to 0.5, as shown in
Figure 4(b), the RT99.99 under ER2 services increases dra-
matically, achieving a minimum RT99.99 with 3 replicas, and
increasing thereafter until the system becomes unstable with
7 or more replicas. Further, under ER2 services, increasing
the NR-utilization to 0.9, as in Figure 4(c), makes the system
become unstable when introducing only one extra replica.
However, under the Exp and HE2 service-time distributions,
the RT99.99 keeps decreasing although the main gain is
obtained with the first few replicas. In particular, when the
NR-utilization is 0.9, the main reduction in RTs is achieved
with the first and second replicas, with marginal improvements
beyond this number. Replication with canceling can thus be
beneficial even under high loads, as long as the replica service-
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time distribution offers enough variability, as it increases the
chances of a short job service time.

D. The effect of the arrival process

We now look into the effect that the statistical characteristics
of the job arrival process have on the RTs experienced under
different replication levels. In addition to considering different
values for the IATs’ SCV, we also modify the decay rate of
the auto-correlation function (ACF) of the IAT sequence. Here
we assume 20 servers and a 0.5 NR-utilization, as an example.
Figure 5(a) shows how the RT99.99 increases as the IAT
SCV increases, under ER2 services, reflecting how the vari-
ability of the arrival process affects the system performance.
In particular, when the SCV is 0.5, the RT99.99 decreases
consistently with the an increasing number of replicas. Instead,
for a larger IAT SCV, the RT99.99 decreases only with the first
few replicas. On the other hand, if Exp services are assumed,
as in Figure 5(b), the RT99.99 also decreases with the number
of replicas when the SCV is low. However, when the SCV
increases to 5 and 10, the reduction in the RTs is limited, as
the main reduction is achieved with the first 3 replicas.

In Figure 5(c), we fix the SCV to 5 and consider, for
ER2 services, various values for the ACF decay rates of the
IAT sequence. For an ACF decay rate of 0.5, the RT99.99
decreases with the first replicas but increases thereafter. For
a larger ACF decay rate of 0.9, it is optimal not to adopt
replication, as the RT99.99 increases with the first replica.
As a high auto-correlation leads to a high probability that
short IATs come in bursts, replication during bursty periods
increases the probability of causing a high utilization, and thus
longer delays. The IATs’ variability and auto-correlation must
therefore be considered when deciding whether to replicate or
not, as these features limit the room for replication.

E. Introducing the canceling overhead

So far we have assumed that the cost of removing replicas
is negligible. However, the canceling operation may require a
significant amount of time, compared to the replica processing
time. To model the canceling overhead, we introduce an
additional phase4 in the replica service-time distribution such
that, when the replica completes service, it has to spend some
time in phase 4 canceling the remaining replicas of this job
before entering the absorbing phase C. For example, assuming
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a mean canceling overhead of 0.1 in Example (3), we have

[S
R

|S⇤
R

] =

1 2 4 C

 !
1 �2 2 0 0
2 0 �2 2 0
4 0 0 �10 10

,

where the replica that completes service enters the phase 4
before entering the absorbing phase C.

Figure 6(a) shows how the RT99.99 under 0% and 1%
overhead, as a proportion of the replica mean service time, are
very similar, decreasing with an increasing number of replicas,
assuming Exp arrivals and services, 10 servers and a 0.4 NR-
utilization. However, when the overhead increases to 10%,
the RT99.99 reaches a minimum at 6 replicas, and addition
replicas degrade the RT. In Figure 6(b), we consider the same
cases but under MAP arrivals, where we immediately observe
larger RTs caused by the bursty traffic. The difference is such
that, for an overhead of 10%, the RT99.99 decreases only with
the first replica, and even a 1% overhead can make a difference
in the number of replicas that achieves the minimum RT.

VII. OPTIMAL REPLICATION AND RESOURCE
PROVISIONING

As we have seen, the potential benefits of replication depend
on a number of factors, including the arrival and service
processes, the overhead, the NR-utilization, and the number of
replicas. In this section, we first explore the optimal number of
replicas to adopt to minimize the offered RT. Further, we show
how the model can support resource provisioning decisions
with SLO guarantees on RT percentiles.

A. Optimal replication

We are interested in finding the number of replicas r

⇤ that
minimizes the p-th RT percentile (RT

p

). Based on the proposed



Algorithm 1 Computing the optimal number of servers c

⇤

Require: cmax, rmax, RTmax, p
1: for r = 1 : rmax do

2: c(r) min c 2 {1, . . . , cmax} : RT

p

(c, r)  RTmax.
3: if c(r)  r then break end if

4: end for

5: c

⇤  min c(r), R {r : c(r) = c

⇤}.
6: if |R| = 1 then return c

⇤, r⇤.
7: else return c

⇤, and r

⇤ = argmin
r2R

RT (c⇤, r).
8: end if

analytical model, we formulate this problem as
r

⇤ = argmin RT

p

(r),

s.t. r 2 {1, 2, . . . , c},
U(r) < 1,

where RT
p

(r) is the RT
p

obtained when r replicas are im-
plemented, c is the number of servers, and the constraint on
U(r), as defined in Eq. (7), ensures stability. This optimization
problem is solved using a line-search method [18], taking ad-
vantage of the observed quasi-convexity of the RT percentiles
as a function of the number of replicas.

Figure 7(a) shows the optimal number of replicas for a
system with 10 servers and Exp arrivals, under different NR-
utilization levels, assuming a negligible overhead. Under HE2

services (SCV = 10), it is optimal to adopt as many replicas
as the number of servers as long as the NR-utilization is under
0.6. Beyond this point the optimal number of replicas de-
creases to 9. Under ER2 services instead, the optimal number
of replicas consistently decreases with a larger NR-utilization,
until it is optimal to not replicate when the NR-utilization
reaches 0.7. It can be seen from Figures 7(b) and 7(c) that with
the increase of the overhead, the optimal number of replicas
decreases. For instance, for Exp services and an NR-utilization
of 0.7, it is optimal to adopt 9, 6 and 2 replicas, for an overhead
of 0%, 1%, and 10%, respectively.

Figure 7(d) considers the case of MAP arrivals and 10%
overhead, showing how the optimal numbers of replicas in
this case is less than or equal to the same number under Exp
arrivals, given the same NR-utilization and service process. For
instance, under 10% overhead and Exp services, replication is
optimal if the NR-utilization is at most 0.8 for Exp arrivals,
but this is only valid for NR-utilizations up to 0.5 for MAP
arrivals. The optimal number of replicas is therefore affected
by the variability and auto-correlation of the arrival process,
as well as the overhead and the NR-utilization.

B. SLO-driven resource provisioning

We now rely on the analytical model proposed to determine
the minimum number of servers c

⇤ needed to meet an SLO
on the RT

p

, i.e., the SLO mandates that p% of the requests
are served in at most RTmax seconds. Assuming at most cmax
servers are available, and the number of replicas is upper
bounded by rmax, the optimization strategy is described in
Algorithm 1. To find the optimal number of servers c

⇤, for
each possible number of replicas r between 1 and rmax, we

TABLE II: Relative error (%) between the moments
Log Dist. first second third

RICC
(SCV=10.36)

HE2 1.25E-11 3.18E-11 5.04E-11
Exp 0 82.39 97.14

Intel
(SCV=29.99)

HE2 3.92E-12 3.04E-12 4.97E-12
Exp 0 93.55 99.84
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rely on a line-search method to find the minimum number
of servers c(r) required to satisfy the RT SLO. The search
terminates when the c(r) found is equal to or less than the
current r, since having more replicas than servers offers no
additional benefit. As it is possible that the optimal number
of servers c

⇤ is achieved by various values for the number of
replicas, collected in set R, we select the number of replicas
that achieves the lowest RT. The selected number of replicas
is labeled r

⇤. In the next section we illustrate this resource
provisioning strategy, considering realistic traffic patterns.

VIII. CASE-STUDY: RICC AND INTEL LOGS

In this section, we consider realistic traffic patterns in CCs
by making use of the RIKEN Integrated Cluster of Clusters
(RICC) and the Intel NetBatch Grid logs, available on the
Parallel Workloads Archive [7], parameterizing the analytical
model with single-task jobs that completed service success-
fully. The IATs show a strong daily and hourly cycle, thus
we divide the arrival data into sets according to the day of the
week and the hour of the day. We also observe high variability
and auto-correlation in the IATs. Thus, for each hour we fit the
first three moments, and the ACF decay rate of the IATs, into
a MAP of second order, with the method in [19]. In addition,
given the variability observed for the service times, we use
the method in [20] to match the empirical first three moments
with an acyclic PH distribution. For comparison, we also fit
the service times to an Exp distribution, which matches the
first moment only. Table II shows the relative errors between
the observed and the fitted moments. Clearly, the exponential
fitting fails to capture higher moments, displaying large errors
for both the RICC and the Intel traces.

We compare the two service-time distributions obtained
from the logs, scaling them to have the same mean service
time, but keeping their higher moments. Figure 8 depicts
the RT99 for these two cases, with an increasing number of
replicas, Exp arrivals, NR-utilization of 0.2, and 20 servers.
Although in both cases the RT99 decreases with the increasing
number of replicas, it decreases much faster for RICC service
times. In fact, for r = 1, 2, the RT99 is larger for RICC than
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for Intel service times, but this order is inverted for larger
values of r. Considering the fitted service-time distributions,
the initial probability vectors for RICC and Intel service times
are [0.15, 0.85] and [0.01, 0.99], respectively, with each phase
offering different service times. This implies that for Intel
service times most of the requests start in the second phase,
and only around 1% start in the first phase, while for RICC
service times the options are more varied. The result is that the
introduction of replicas has more potential for RICC service
times, as it is more likely that the replicas follow different
paths, experiencing different service times, and potentially
reducing the job service times.

From the daily and hourly partition of the data, we select
5 data-sets for the RICC case, which have the mean arrival
rates, SCVs, and ACF decay rates shown in Figure 9. For
each of these 5 conditions, we solve the resource provisioning
problem introduced in Section VII, with cmax = 30, rmax = 5,
and RTmax = 26 for the 99-th percentile (RT99). The results,
depicted in Figure 10, show how the effect of the arrival rate
appears dominant as the trend of the number of servers is
similar to that of the arrival rate. For example, the set 3 has
the lowest arrival rate and requires the least number of servers
to satisfy the RT99 SLO. However, both the SCV and ACF
play a significant role. For instance, the sets 1 and 2 have
a similar arrival rate, but the SCV of set 1 is much larger,
leading to the minimum number of servers needed to be 26,
while only 16 servers are needed for set 2. Also, comparing
sets 4 and 5, set 5 has a larger arrival rate and SCV than set 4;
however, set 4 requires more servers to achieve the RT99 SLO.
This is caused by the large ACF decay rate of set 4, which is
0.649, while that of set 5 is almost 0. If in this dimensioning
problem we replace the MAP by Exp arrivals, we obtain that
the system requires less servers to satisfy the SLO on RT99,
as shown in Figure 10. For instance, the number of servers
needed for sets 1 and 2 are very similar under Exp arrivals,
as now the variability and auto-correlation of the IATs are
ignored. As a result, using the dimensioning proposed for set
1 under Exp arrivals will cause a violation of the RT SLO, as
the resources are not enough to cope with the IATs variability.

We conclude this section by taking the dimensioning ob-
tained above under MAP arrivals for the 5 different RICC
cases, but using the scaled Intel service times. Figure 11
depicts the percentile that corresponds to RTmax = 26, achieved
under RICC and Intel service times, using the RICC di-
mensioning. Clearly, the percentiles obtained using the Intel

service times are much smaller than the 99% objective. For
instance, for data-set 1, the RTmax objective is only achieved by
0.62% of the requests under Intel service times, and by 99.02%
under RICC service times. This illustrates how important the
service-time higher moments actually are, as ignoring them
may lead to SLO violations or over-provisioning.

IX. CONCLUSION

The results presented in this paper illustrate that replication
with canceling has a significant potential to keep latency
low, especially the tail of the RT distribution. This potential,
however, depends on a number of factors, including the the
arrival and service processes, the utilization, and the number of
replicas. Notably, the service times play a key role, as a highly
concentrated distribution offers limited chances to benefit from
replication. As the workload and utilization change dynam-
ically, the introduction of replication with canceling would
require an online decision system to determine the adequate
replication level, given the current conditions.
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[15] Z. Qiu and J. F. Pérez, “Enhancing reliability and response times via
replication in computing clusters,” in INFOCOM, 2015.

[16] W. Whitt, “Approximating a point process by a renewal process, I: Two
basic methods,” Oper. Res., vol. 30, pp. 125–147, 1982.
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