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Abstract—Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise
applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the
CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current
estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we
propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource
queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real
application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.
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1 INTRODUCTION

P ERFORMANCE management of datacenter and
cloud applications aims at guaranteeing quality-

of-service (QoS) to end-users, while minimizing op-
erational costs [1]. To achieve this goal, predictive
models are enjoying a resurgence of interest as tools
for automated decision-making at both design time
and runtime [2], [3]. To successfully make use of
predictive models, their parameterization is a key
and non-trivial step, especially when estimating the
resource requirements of requests. In performance
models, this information is encoded in the resource de-
mand, which is the total effective time a request seizes
a resource, e.g., a CPU, to complete its execution. This
parameter, or its inverse – the resource service rate,
is fundamental to specify performance models such
as Markov chains, queueing networks, or Petri nets,
popular in software performance engineering. Esti-
mating resource demands is also helpful to determine
the maximum achievable throughput of each request
type, for admission control algorithms, and to define
a baseline for performance anomaly detection [4].
Further, these estimates can be used to parameterize
performance models derived from high-level software
specifications, such as UML MARTE [5], or PCM [6].

Although deep monitoring instrumentation could
provide demand values, they typically pose unac-
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ceptably large overheads, especially when run at
high-resolution. For this reason, a number of ap-
proaches [2], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16] have been proposed to obtain mean resource
demand estimates by applying statistical methods
on coarse-grained measurements. Averaging is also
convenient to summarize the intrinsic uncertainty and
variability that applications face due to file size dis-
tributions, variability in input data, and caching [17].
However, most of these estimation approaches rely on
utilization data, which is not always available, as in,
e.g., Platform-as-a-Service (PaaS) deployments where
the resource layer is hidden to the application and
thus protected from external monitoring.

We propose novel estimation methods that rely on
response time and thread-pool occupation measurements
at an application server. A key advantage of response
data is that it can be efficiently obtained by active
probing or by simple injection of timers in the applica-
tion code. However, it is sensitive to the CPU schedul-
ing policy and thus more challenging to analyze than
utilization data. Response-based maximum likelihood
formulations have been recently attempted only for
simple first-come first-served queues [11], however
these cannot cope with multi-threading and limited
thread pools. These complex features are addressed
effectively by the proposed estimation methods.

The main contributions of this paper are detailed as
follows. First, we present MINPS, a scheduling-aware
demand estimation method for multi-threaded appli-
cations with a small to medium threading level, e.g.,
below twenty threads. The MINPS method relies on
two subsidiary methods: RPS, which is a regression-
based method derived from mean-value analysis [18],
and MLPS, a maximum-likelihood (ML) method that
relies on a Markovian description of the resource
consumption process. Our second contribution aims
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at applications with medium to large threading lev-
els, in the order of several tens, hundreds or more,
for which we introduce two alternative estimators:
FMLPS, an ML approach based on fluid models,
i.e., approximations of queueing models based on
ordinary differential equations; and ERPS, a modified
version of RPS that better accounts for parallelism in
multi-core architectures. These methods complement
each other, FMLPS being more accurate while ERPS
being more efficient computationally. An implemen-
tation of these methods is available at https://github.
com/imperial-modaclouds/modaclouds-fg-demand.

Validation results on simulation data show that our
algorithms offer good performance under a broad
range of scenarios, including heterogeneous and non-
exponential service demands. Further, we have tested
the methods using empirical datasets from two multi-
threaded applications: the commercial application
SAP ERP [19], which has a small threading level; and
the open-source e-commerce application OFBiz, which
has a large threading level.

The paper is organized as follows. Section 2 re-
views related work on demand estimation. Section
3 provides background and a motivating example.
Section 4 introduces an empirical estimation method
that provides a baseline for the other methods. The
regression-based methods RPS and ERPS are intro-
duced in Section 5, while the ML approach MLPS,
and MINPS, are presented in Section 6. The scalable
ML method FMLPS is the topic of Section 7, and
additional validation results for all the methods are
provided in Section 8. We illustrate the use of these
methods on empirical datasets in sections 9 and 10.
Section 11 concludes the paper.

2 RELATED WORK

Resource demand estimation has received significant
attention recently, in particular for resource manage-
ment of self-adaptive systems [13]. In this context,
different adaptation rules are undertaken for differ-
ent request classes, where a class is a request type
identified for example by a URL or by a cluster-
ing thereof. Estimation methods based on indirect
measurements have gained wide acceptance, with
the majority of them being based on regressing to-
tal CPU utilization and class throughputs to obtain
class estimates of resource demands [7], [14], [15],
[20]. Considering multiple classes is important since
requests belonging to different classes may have very
different resource demands. These methods, however,
may suffer from multicollinearity, which can affect the
estimates and their confidence intervals [2], [7]. To
overcome this and other problems of regression-based
methods, other approaches have been put forward,
including Kalman filters [8], [16], [21], clustering [9],
[10], and pattern recognition methods [22], [23]. Other
works exploit CPU utilization measurements at the
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hypervisor level to estimate resource demands [24]
and virtualization overheads [25].

Other estimation methods rely on a different set
of measurements, i.e., response times, queue lengths,
or equivalently arrival and departure time pairs for
a set of requests. Previous work on inference on
these metrics is limited. Queue-length measurements
have been used for a Gibbs sampler [26] based on
a closed multi-class product-form queueing network
(QN). Queue-length data is also used in [27] to de-
velop a maximum-likelihood (ML) method based on
the diffusion limit of a single-class first-come-first-
served (FCFS) multi-server queueing model. Arrival
and departure times are used in [28] to estimate
service times, with a Markov Chain Monte Carlo
approach, for fairly general single-class QNs. In [13],
unknown demands are estimated via an optimization
problem where the difference between the measured
and the predicted response times is minimized. Sim-
ilar approaches [12], [29] model the resources as a
product-form open QN, with explicit expressions for
the mean response times. [30] uses utilization, re-
sponse times, and arrival rates measurements to pa-
rameterize a regression model that predicts the overall
average response time. Also based on response times,
[11] proposes an ML demand estimation method
assuming that requests are processed in an FCFS
fashion. Our methods also make use of the measured
response times, but we tackle the complications of
estimation in multi-threaded, multi-core architectures,
and in the presence of admission control and multi-
class workloads. Further, our methods are able to
consider applications with either small or large thread
pools.

3 BACKGROUND

3.1 System model
Our reference system is a multi-threaded application
running on a multi-core architecture. The application
server processes requests incoming from the exter-
nal world, either in an open or closed-loop fashion.
This reference system is conveniently modeled as
the layered queueing network shown in Figure 1.
Figure 1(a) details the server admission queue (a
FIFO buffer), which we assume to be configured

https://github.com/imperial-modaclouds/modaclouds-fg-demand
https://github.com/imperial-modaclouds/modaclouds-fg-demand
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with a pool of W worker threads. A worker thread
is an independent software processing unit capable
of serving requests. We assume that workers cannot
remain idle if a request sits in the admission buffer.
Also, we assume that the measured response times
are sanitized of the time where the worker is blocked
without consuming computational resources at the
local server. In other words, we assume that the time
consumed in calls to services deployed on external
resources, where the worker is effectively blocked,
has been subtracted from the sampled response time.
This can be achieved by relying on application logs.
In sections 9 and 10 we consider the SAP ERP and
the OFBiz e-commerce applications, which have an
architecture that can be mapped into this model.
In both cases a set of services are exposed by the
application, which is deployed on a single resource
where all the services are executed. The case where
the application is replicated on multiple servers, and
a load balancing mechanism is applied to split the
requests among them, may be handled by considering
each resource separately. More complex applications,
such as those that orchestrate a number of distributed
services, fall beyond the reference model. However,
the model may still be useful to characterize some of
the individual services that compose the application.

Throughout the paper, we focus on the response
times at the server, not on end-to-end delays, and
restrict our attention to the dynamics inside the re-
source layer shown in Figure 1(b). This layer may
represent a physical host or a virtual machine, with
the queues modeling the V available CPUs. The
queues are assumed to process jobs with a processor-
sharing scheduling policy, capturing the time-sharing
in the operating system. The resource layer may be
abstracted by a closed network with a population of
W workers placing resource demands to serve the
requests, on the V identical queues. Thus, the jobs
in the closed network represent workers, each one
associated to an admitted request that belongs to
one of R classes. The think-time server models the
time that elapses between completion of a request
and admission of the following one. If the admission
control buffer is full at the time of a completion, this
think time is zero; otherwise, it is the residual time
before the arrival of the next request. Further, after
leaving the worker thread, and before going through
the think time, a request can change its class ran-
domly according to a discrete probability distribution.
This user class-switching behavior accounts for systems
where users may change the request type they send,
e.g., sending requests to different URLs.

Scheduling. We take the simplifying assumption that
the operating system dispatches active workers to
CPUs to maximize the available capacity. Thus, the
V CPUs are assumed to be fully shared and the W
workers are placed to exploit all the available capacity.
Importantly, we do not keep track of the specific CPU on

which a worker executes. This assumption is useful to
limit the measurement complexity, since threads can
frequently migrate among CPUs and high-resolution
measurements would be expensive. By looking at an
aggregate level, we are able to ignore these details
without compromising estimation accuracy, as we
show in Section 4. To simplify, we also ignore possible
CPU affinities, where a subset of threads are bound
to specific CPUs, although our fluid models are in
principle generalizable to this case.

Demand estimation. We refer to the expected service
demand posed by class-r requests as E[Dr]. The
main goal of the analysis is to characterize E[Dr], for
each request class r, using measurements of response
times inside the resource layer in Figure 1(b). This
means that our response times require to measure
the execution time, from request assignment to a
worker thread, until completion, and excluding non-
CPU related overheads such as network transmission
latency. Monitoring modules simplify the task of fil-
tering out these components from the response time
measurements [31].

It is also important to remark that, by looking only
at mean resource demands, we can equivalently map
our problem into estimating the service rates µr at
which an application serves class-r requests, thanks to
the relation1 E[Dr] = µ−1r . However, since the applica-
tion works in a multi-threaded fashion, at any time t
there can be n(t) concurrent requests being processed
at the CPU. A class-r job will thus be processed at an
effective rate of µr/n(t). Hence, the technical problem
we need to address is how to filter out such n(t)
factor from the measurements. This is simple to do if
all information is known, but becomes difficult when
sampling, as we show in the next sections.

3.2 Estimation methodology

The demand estimation methodology we propose
requires the ability to collect a dataset of I system
state samples n(ti) = (n0(ti), n1(ti), n2(ti), . . . , nR(ti))
at a finite sequence of instants t1 < t2 < . . . < tI ,
where
• nr(ti) represents the number of busy workers serv-

ing requests of class r, 1 ≤ r ≤ R, at time ti
• n(ti) =

∑R
r=1 nr(ti) is the number of busy workers

• n0(ti) = W − n(ti) is the number of idle worker
threads at time ti

Throughout the paper, we assume that the instant ti
corresponds to the time an event happens in the sys-
tem, i.e., a request enters or leaves a worker. We con-
sider two main alternatives for the collection of this
information. First, we consider the baseline case, where

1. Here we assume that the ratio of the number of visits to the
processing node to the number of visits to the delay node is one,
which is in line with the architecture described. This however can
be easily generalized to any ratio [4].
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the system is observed during a monitoring period of
length T , along which all samples {n(ti)}0≤ti≤T are
collected, i.e, every time a request enters or leaves a
worker. While this is unrealistic for most production
systems, due to the overhead necessary to collect this
information, it serves us to set a lower bound on the
estimation error attainable with a given sample size.
It is important to stress that such estimation error
will exist due to finite size of the sample, and more
importantly, due to our assumption of not keeping
track of the specific CPU on which a worker executes.

The second, more realistic, alternative is the one of
arrival sampling, which considers collecting a set of
samples {(n(ti), ri)}Ii=1, where the instants ti corre-
spond to arrival times, and, together with the system
state n(ti), we also collect the response time of the i-
th sampled request. In other words, sample i is com-
posed of the system state n(ti) at the job arrival time,
ti, and the job response time ri, which is recorded at
the job departure time ti + ri. Contrary to the first
sample type, in this case the samples need not be
consecutive and are treated as completely unrelated.
Note that samples of the system state at these instants
can be obtained through, e.g., server or application
logs.

3.3 Motivating Example

In this section we consider the use of three existing
methods, two of which require utilization measure-
ments, and one based on response times and queue-
length measurements. The method introduced in [29]
relies on an open product-form QN model to represent
the resource usage. We refer to this method as PF
for product form. The system we consider, as shown
in Figure 1(b), features a closed topology due to the
thread pool and the admission control. The common
method used in [15] and other works, is based on
the utilization law and requires both utilization and
throughput measurements to perform a non-negative
linear regression. We refer to this method as NNLR for
non-negative linear regression. Instead, the method
in [11] relies on response time and queue length
measurements, but models the resource as a single
FCFS server, which may not be adequate for a multi-
threaded multi-core deployment. We refer to this
method as FCFS.

We consider two system setups: V = 1 processor
and W = 2 working threads, and V = 2 proces-
sors and W = 4 threads. We assume a total of N
external users that generate requests, and let this
number vary between 20 and 180, which allows for
load values between 10% and 90% approximately.
The users may belong to one of two classes, each
one with a different mean resource demand. With
these parameters, we set up a simulation (the details
of which are described later) and sample, after a
warm-up period and using sampling windows of five
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Fig. 2. Various estimation methods - Two classes

seconds, the overall server utilization, as well as the
average response time and the throughput for each job
class. Figure 2 illustrates the mean relative absolute
estimation error (see Eq. (2)) obtained with the three
methods mentioned above, and with the baseline (BL)
method to be introduced in Section 4. For the single-
processor case we observe that the NNLR and FCFS
methods perform well, but increasing the number of
servers degrades their performance severely. While
these methods have been shown to be very effective
under different setups, the multi-threaded multi-core
deployment, together with the limited thread pool,
pose additional challenges. Further, the utilization
measurements required by two of these methods may
not be available in some deployments.

4 BL: BASELINE ESTIMATION

We consider here the baseline case where the dataset
includes all samples n(ti) for the instants ti at which
requests arrive and depart from the system, between
any two instants t1 and tI . The estimation algorithm
based on this dataset, named BL, will serve to test
the performance of other methods that rely on less
information.

4.1 BL Algorithm Description
In a single-processor system (V = 1), the baseline
dataset allows reconstructing exactly the sample path
of the system and the individual history of each
processed job. In this case, it is straightforward to
determine the empirical values of the demand of each
processed job. That is, consider a class-r request j,
1 ≤ j ≤ J , arrived at time τj,1 = tl and departed
at time τj,L = tl+L−1, where L − 2 events occur be-
tween its arrival and departure at times τj,i = tl+i−1,
1 < i < L. These events correspond to the arrival
and departure of other jobs and are recorded in the
baseline dataset. Then the demand placed by job j is

dj,r =

L−1∑
i=1

(τj,i+1 − τj,i)
n(τ+j,i)

, (1)

where n(τ+j,i) refers to the state of the system just after
time τj,i. We therefore approximate the mean class-r



5

1 

Time 

Service 

Demand 

1 

| | 

CPU-1 

t1,1 

| 

t1,2 t1,3 

Fig. 3. Baseline estimation

demand E[Dr] with the sample mean of the values
{dj,r | 1 ≤ j ≤ J}. Figure 3 illustrates (1), where a
CPU starts serving three different jobs. We follow the
light-gray job, marked with a one, which runs for two
periods. The first period concludes when the job with
the dashed background leaves the server, while the
second begins at this instant and concludes when the
light-gray job completes service. The length of the first
period is τ1,2−τ1,1, while the second period lasts τ1,3−
τ1,2. We have thus the two terms of the sum in (1),
which give us the demand posed by the marked job as
(τ1,2−τ1,1)/3+(τ1,3−τ1,2)/2. The BL method also has
the following property, the proof of which is provided
in the supplemental material.

Proposition 1: When the processing times follow an
exponential distribution, the BL estimator is efficient,
i.e., it is unbiased and achieves the Cramer-Rao
bound.

Since we assume that the state of each individ-
ual processor is not tracked separately, in the multi-
processor case (V > 1) we estimate the value dj,r
by considering two cases. In the first case, where
the number of active workers n(τ+j,i) is less than or
equal to the number of processors V , we assume that
each of the active workers is assigned to a different
processor. Thus dj,r is equal to the numerator in (1),
as the workers do not need to share the processors’
capacity. In the second case, where n(τ+j,i) > V , we
assume that all processors are busy and the system
can be approximated by a single “super-processor”
with V times the speed of the individual processors.
The demand of job j is thus computed as

dj,r =

L−1∑
i=1

(τj,i+1 − τj,i) min(n(τ+j,i), V )

n(τ+j,i)
.

4.2 Results

Figure 4(a) reports the estimation error obtained with
the BL method for a system with V = 2 processors
and W = 8 threads, using different sample sizes (SS).
In this and the upcoming experiments, we run each
of the estimation methods with the same number
of samples (100 per request class unless otherwise
stated) and obtain an estimated mean service time
for each class. Letting E[Dr] and D̄r,k be the actual
and the estimated mean service time for class-r jobs
in experiment k, respectively, we obtain the absolute
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relative error as

errorr,k =
|E[Dr]− D̄r,k|

E[Dr]
. (2)

For each system setup, we run 30 experiments and
present the mean estimation error and its 95% confi-
dence interval using the samples of errorr,k from all
the request classes. In Figure 4 we observe that the
error is on average 8.34% for a sample size of 100,
with small variations depending on the number of
users (load) in the system. The error diminishes to
2.45% on average for 1000 samples, and to 0.86% on
average for 10000 samples. We have also observed
that the estimates obtained with the BL method are
not significantly affected by the threading level W ,
as depicted in Figure 4(b), nor by the number of
processors V .

These results suggest the following considerations.
First, since the samples are not affected by noise and
are drawn from a model that behaves according to our
assumptions, the values found are empirical lower
bounds on the achievable performance of estimation
methods that rely on arrival sampling. It is however
possible that other estimation methods can provide a
smaller estimation error than BL for specific sample
sets. Our results indicate that even with 100 samples
the estimates are reasonably accurate, but better re-
sults are obtained with more samples. It is interesting
to note that the BL estimation approach avoids to
explicitly represent the state of each server in the
multi-core case. Thus, it should be interpreted as an
empirical lower bound on the achievable performance
with this kind of representation. Describing the state
of each server is possible, but poses additional chal-
lenges in terms of both the instrumentation needed to
collect the data, and the modeling required to track
the state of each processor separately.

5 RPS: A REGRESSION-BASED APPROACH

In this section we describe RPS, a regression-based
estimation method that makes use of response times
and queue lengths observed at arrival times. RPS
is based on the mean-value analysis [18] theory for
product-form closed queueing networks (QNs). Let
N = (N1, . . . , NR) be the population vector of a
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closed QN, where Nr is the number of class-r jobs.
For a processor-sharing (PS) station, let E[Rr] be the
expected response time of a class-r job, E[Dr] its
expected service demand, and E[Q] the expected total
queue length at the station. We addN as an argument
to the previous expressions to make explicit that these
are for a network with population N . Also, let er be
a zero vector with a 1 in the r-th position. For the
single PS server case, the main result from mean-value
analysis states that

E[Rr](N) = E[Dr] (1 + E[Q](N − er)) ,

i.e., the expected response time for a class-r job in
this station, in a network with population N , can be
expressed as a function of its expected service time,
and the expected queue length in this station in a net-
work with one class-r customer less. From the arrival
theorem [18] we also know that E[Q](N−er) is equal
to the expected number of jobs seen upon admission
by a class-r job (excluding itself) in a network with
population N , referred to as E[QA] ≡ E[QA](N).
We thus obtain E[Rr] = E[Dr]

(
1 + E[QA]

)
. Letting

E[Q̄A] = 1+E[QA] be the expected number seen upon
admission, including the admitted job, we have

E[Rr] = E[Dr]E[Q̄A].

Thus to estimate E[Dr] we perform a linear regression
on observations of Rr against Q̄A. These observations
are taken from the sample {(n(ti), ri)}Ii=1 discussed
in Section 3.2, as ri is the response time and n(ti)
the number of jobs seen upon admission by the i-th
sample.

The previous result holds for a single processor
only. For V > 1 processors we split the expected
queue length equally among the processors, thus

E[Rr] = E[Dr]E[Q̄A]/V, (3)

becomes the regression equation to estimate E[Dr].

5.1 ERPS: An extended RPS

We now introduce a small modification to the RPS
method that consists of replacing the term V in Eq. (3)
by an estimate of the number of busy servers Ṽ .
The purpose of this is to attempt to solve the main
drawback of the RPS method, which, as illustrated in
the next section, is its inability to capture the behavior
of the system under low loads. We estimate Ṽ as

Ṽ = min

{
V,

1

I

I∑
i=1

n(ti)

}
.

We refer to this method as Extended RPS (ERPS).
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5.2 Results
We now illustrate the behavior of the RPS and ERPS
methods under different system setups. We generate
the data by means of a discrete-event simulation,
implemented in Java Modelling Tools (JMT) [32], with
the closed-loop topology described in Section 3.2,
where the V CPUs are assumed to be fully shared
among the workers.

We point out that the RPS method, as it relies on
regression analysis, is computationally inexpensive
and can be executed in less than one second in a
standard desktop. Figure 5(a) shows the error rate for
the BL, RPS and ERPS methods for the case with one
processor and 2 threads. Both RPS and ERPS show
a very good behavior, comparable with that of BL,
for the whole range considered for the number of
users. In Figure 5(b) we consider a larger number of
processors V = 4, and W = 16 worker threads. The
error for the RPS method increases significantly for
low loads, reaching 145% and 52% error for 20 and
60 users respectively. This behavior, which worsens
for a larger number of processors, is caused by the
assumption that the queue length is split equally
among the V servers, but under a small load, less
than V servers are actually active, and the service
rate is less than the total capacity. ERPS shows a
better behavior, thanks to the correction introduced by
splitting the queue length among the mean number of
busy servers Ṽ . The error of ERPS is however twice
that of BL under low loads, a trend sustained in a
broad range of multi-processor scenarios. Thus, RPS
and ERPS estimate the resource demand accurately
for the single-processor case, and for a larger number
of processors under medium to high loads.

6 MLPS: AN ML APPROACH

In this section we introduce MLPS, a maximum like-
lihood (ML) estimation method well-suited for the
multi-processor case under low loads.

6.1 Maximum Likelihood
An ML estimation procedure is an optimization
method that aims at finding the value of the parame-
ters of a probabilistic model, such that the likelihood
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L of obtaining a given set of samples is maximal. For
MLPS, we assume the sample set {(n(ti), ri)}Ii=1, in-
troduced in Section 3.2, is available. From this sample
set, MLPS estimates the mean service demand E[Dr]
for each class r.

The MLPS method seeks a solution to the optimiza-
tion problem with objective function

max
µ1,...,µR

L (r1, . . . , rI |n(t1), . . . ,n(tI), µ1, . . . , µR) ,

where the service rates µr are the decision variables.
Recall that finding the rates µr is equivalent to finding
the mean demands since E[Dr] = µ−1r . We prefer
in MLPS to operate with rates, instead of demands,
because the likelihood function leverages on a Markov
model parameterized by the rates µ = [µ1, . . . , µR].
For feasibility we add to this likelihood problem the
constraints µr ≥ 0, for r = 1, . . . , R.

Assuming independent samples and applying log-
arithms, the objective function can be written as

max
µ1,...,µR

I∑
i=1

log (L (ri|n(ti),µ)) .

Notice that, although the response times are not inde-
pendent, the effect of correlation is reduced if the sam-
ples are randomly selected or well spaced in time. The
latter can be achieved, for instance, by collecting the
response times of jobs whose execution do not overlap
or that belong to different busy periods. For instance,
considering the scenarios that will be later introduced
in Section 8, and with sets of 200 samples, we observe
a mean lag-1 auto-correlation of the response times
of 0.091. If the samples are taken only from non-
overlapping jobs, the mean auto-correlation reduces
to 0.065, while randomly sampling the response times
is also effective as it reduces the mean auto-correlation
to 0.054. Further, if samples are taken from different
busy periods the mean auto-correlation reduces to
0.053. The next sections define a Markov model to
compute L (ri|n(ti),µ).

6.2 The approximate model
To capture all the features of the multi-threaded ap-
plication under consideration, the ideal model should
consider the two layers depicted in Figure 1. A
Markov model of this system, however, is infeasible
since it would require a very large state space, limiting
the scenarios that could be analyzed. To cope with
this limitation, we introduce an approximate model
that focuses only on the behavior after admission, as
depicted in Figure 1(b). The model is a closed QN,
with a total of W circulating jobs. Each job represents
a worker thread contending for CPU capacity. These
users can be either at a PS processing node, where
class-r users are served with rate µr, or at a delay
node, where class-r users spend a think time with
mean λ−1r , for r = 1, . . . , R. This think time captures

the time between a service completion and the admis-
sion of a new request. Both processing and think times
are assumed to be exponentially distributed to ob-
tain the Markov-chain (MC) representation described
in the next section. In Section 8 we show that the
MLPS method provides good estimation accuracy also
under hypo-exponential processing times. The hyper-
exponential case proves harder, though we have ob-
tained good results for cases with limited variability.

6.3 The absorbing Markov chain representation

To compute the likelihood L ((n(ti), ri)|µ) of obtain-
ing a given sample, we define an absorbing MC such
that the time to absorption reflects the total processing
time received by the i-th sampled job. Consider an
MC with m + 1 states such that its generator matrix
can be written as

Q =

[
T t
0 0

]
,

where T holds the transition rates among the first
m states, and is called a sub-generator matrix. The
vector t = −Te, with e a column vector of ones,
holds the transition rates from the first m states to
state m + 1. Since the rates out of state m + 1 are
zero, once the chain visits this state it stays there
forever, making it an absorbing state, and all the
others transient. Similarly, the initial state in this MC
is selected according to the row probability vector
[α α0], where the i-th entry of α holds the probability
that the MC starts in transient state i, and α0 = 1−αe.
Starting from a transient state, the PDF of the time to
absorption in state m+ 1 is [33]

f(x) = α exp(Tx)t. (4)

Sub-generator T : In our model, given a sample
(n(ti), ri) for a tagged job i, the parameters α and
T of the absorbing MC are a function of the observed
number of jobs in service n(ti) and the service rates
µ, while the absorption time is equal to the total
processing time ri. To keep track of the tagged job, we
extend the set of classes with a tagged class, and allow
only the tagged job to belong to it. To describe this
model, the state space of the MC needs to consider
all possible combinations of W jobs in R+ 1 different
classes and two nodes. This number is large even for
small values of W , making infeasible the computation
of the matrix-exponential in (4). To cope with this
problem we introduce the following key assumption.
We assume that the total population of class-r jobs
(threads) is equal to the one observed by the tagged
job upon admission, i.e., nr(ti).

As the number of jobs in each class is now limited, it
is enough to keep track of the number of jobs of each
class in the service node. Let k(ti) be the class of the
i-th admitted job, and let Xr(t) be the number of class-
r jobs in service, without considering the tagged job.
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Require: State l = (l1, . . . , lR), l =
∑R
r=1 lr + 1

for r = 1, . . . , R do
Service completion
T (l, l− er) = µrlr/l
Think time completion
T (l, l+ er) = (nr(ti)− lr)λr

end for

Fig. 6. MC non-absorbing transition rates

We can thus describe the system with the variables
{Xr(t), r = 1, . . . , R, t ≥ 0}, taking values in the set

{(l1, . . . , lR)| 0 ≤ lr ≤ nr(ti)− 1{r = k(ti)}} , (5)

where 1 is the indicator function.
The non-absorbing rates of the MC {Xr(t), r =

1, . . . , R, t ≥ 0} are shown in Figure 6, including
both arrivals and service completions at the process-
ing node. Additionally, absorption occurs in state
(l1, . . . , lR) with rate µk(ti)/l, l =

∑R
i=1 li + 1, corre-

sponding to the tagged job service completion. The
non-absorbing rates compose the sub-generator ma-
trix T (n(ti),µ) associated with sample (n(ti), ri).

Initial distribution α: To define the initial probability
distribution α we observe that the i-th sampled job
finds the processor with n(ti) jobs. Thus the initial
probability vector α(n(ti)) has a one in the entry
corresponding to state n(ti), and zero everywhere
else. In this manner the likelihood of obtaining a
sample (n(ti), ri) when the service rates are µ can be
expressed as

L (ri|n(ti),µ) = α(n(ti)) exp(T (n(ti),µ)ri)t(n(ti),µ),

where t(n(ti),µ) = −T (n(ti),µ)e.

6.4 The case of multiple processors

We now extend MLPS to consider multiple processors.
As keeping track of the number of busy worker
threads in each processor would suffer from the curse
of dimensionality, we modify the transition rates in
the absorbing MC as follows. In state l = (l1, . . . , lR)

such that ∃r with lr ≥ 1, and l =
∑R
r=1 lr + 1 ≤ V ,

i.e., when the number of jobs in process is less than
or equal to the number of processors, we assume that
each job is being processed by a different processor,
and therefore a transition occurs to state l − er with
rate lrµr. Instead, when l > V , the service completion
rate of a class-r job is V µrlr/l, as if the processor was
a single “super-processor” with V times the capacity
of a single processor.

6.5 Estimating the think times

To estimate the mean think times λ−1r for each class
r, we assume that, during a given monitoring period,
the admission rate of requests to the worker threads,

called βr for class-r jobs, can be estimated. As this re-
duces to knowing the number of arrivals in the moni-
toring interval, this information can be extracted from
server log files. Now, from the sample {(n(ti), ri)}Ii=1

we compute the average number of busy threads
seen upon admission, that is W = 1

I

∑I
i=1 n(ti). Since

W − W can be thought of as an estimate of the
mean number of threads undergoing a think time, we
approximate the think rate as

λr =
βr

(W −W )/R
. (6)

This expression is a simple application of Little’s law,
as (W − W )/R approximates the mean number of
class-r jobs in the delay node, λ−1r is the mean time
spent in this node, and βr is the effective throughput.
Here we divide the number of idle threads evenly
among the different request classes. Notice that if
the server is lowly loaded, the think rate λr is small
both because βr is small and W is close to zero. The
opposite occurs under heavy loads.

6.6 Results
We illustrate the performance of MLPS by consider-
ing, as in Section 5, a system with 2 job classes, 1 pro-
cessor and 2 worker threads. We must highlight that
the simulation is performed for the system as depicted
in Figure 1, without considering the assumptions in-
troduced in the derivation of MLPS. Figure 5(a) shows
the error for MLPS, where a trend, repeated among a
set of scenarios broader than the ones shown here,
arises: MLPS provides estimates similar in accuracy
to those of the BL method for low loads, but its
accuracy diminishes for high loads. This behavior
also holds for multiple processors, as illustrated in
Figure 5(b), where we consider 4 processors and 16
worker threads. We have performed an exhaustive set
of experiments, and found that this trend holds for a
broad range of parameter values. MLPS thus performs
well under low loads for the multi-processor case,
complementing well the RPS method, which performs
well under high loads but poorly under load loads.

6.7 The MINPS method
In this section we present the MINPS method, which
is built on top of RPS and MLPS, and relies on two
observations. First, RPS has a difficulty under low
loads because it is incapable of treating correctly the
situation where n < V jobs are being processed. In this
case, not all processors are busy, and approximating
them as a single “super-processor” working at rate V µ
becomes too coarse. As a result, RPS overestimates
the mean service time, since the measured response
times appear too long for a system with service rate
V µ, while the actual service rate will be at most nµ.

Second, one of the drawbacks of MLPS is its inabil-
ity to capture arrivals that occupy the worker threads
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Fig. 7. MINPS - ERPS - Two classes

beyond the state observed upon admission. That is,
the jobs observed upon admission can finish their
service and return later on, but the number of jobs in
each class is limited by the numbers observed upon
admission. As a result, under high loads, there will
be samples where the observed number of jobs in
process is (much) lower than the maximum number
reached before the tagged job service is completed. In
this case, MLPS over-estimates the service demand, as
the response times observed have to be matched by
a system where the servers are shared among fewer
jobs than in the actual system.

From these observations we conclude that, when
the RPS and MLPS estimates have larger errors, both
methods are likely to fail by over-estimating the service
demand. In MINPS we propose to run both methods
and choose the one that offers the smaller estimated
mean service demand, thus preventing the use of an
over-estimated value caused by the failures described
above. Figure 7(a) shows the behavior of MINPS
against BL and ERPS for a setup with 4 processors
and 16 threads. While their performance is similar
under high loads, MINPS has a much smaller error
under low loads, similar to that of BL. This behavior is
sustained for setups with a larger number of threads,
as in Figure 7(b), and processors.

7 FMLPS: A SCALABLE ML APPROACH

The MLPS method described in the previous section
relies on an approximation to limit the MC state-space
size. However, if the number of threads or proces-
sors is large, the MC state-space size can turn the
likelihood computation infeasible. In fact, the number
of threads considered in the previous sections are
compatible with memory-intensive applications, such
as the ERP application analyzed in Section 9, where
allowing a large number of parallel threads may
cause memory bottlenecks. In this case, the number
of parallel threads is limited and the state space of
the MC underlying MLPS is tractable. In other types
of applications, e.g., web sites, the number of worker
threads can be significantly larger, as the memory
access requirements are much lower.

To deal with applications with a large number of
threads, we introduce an ML method that replaces the

underlying MC in MLPS with a fluid approximation.
The fluid model avoids the state-space explosion and
is therefore suitable for models with a large number
of threads and processors. With the fluid model, the
matrix-exponential in (4) is replaced by the solution of
a set of ordinary differential equations (ODEs), which
is derived from the original system by a scaling ar-
gument. As with MLPS, for a given sample (n(ti), ri)
we model the state after admission as a closed multi-
class QN with two stations: a processing station and a
delay station. A key difference with respect to MLPS
is that, instead of assuming a total population of n(ti)
workers, FMLPS assumes the correct number of W
workers, where W − n(ti) are initially located at the
delay station. This better captures the dynamics of the
admitted jobs, but it is expensive to consider with the
MC model of MLPS due to the state-space explosion.

7.1 The FMLPS QN model
We model the dynamics after admission as a QN with
R classes and two stations. One station represents the
super-processor obtained by aggregating the V CPUs;
the other station is a think-time server to model the
workers’ idle time. We assume a total of W jobs and
allow the jobs in the QN to change their class when
transferring from the CPU to the think time server,
making this model a class-switching QN2.

We assign the admitted job to a tagged class, labeled
R+1, as in MLPS. With this setup, the QN can be mod-
eled as an MC, the state of which at time t is given by
the vector X(t) = {Xi,r(t), i ∈ {P,D}, 1 ≤ r ≤ R+1},
where Xi,r(t) is the number of class-r jobs in resource
i at time t, with i = P (resp. i = D) standing for the
processing (resp. delay) station. The system state is
modified by events, which are limited to admissions
(think time departures) and service completions (CPU
departures). Once the service of a class-r job termi-
nates in station i, a job proceeds to station j as a class-s
job with probability P r,si,j , allowing the worker class-
switching behavior. In FMLPS, this feature is used
to estimate the response time distribution, and thus
the likelihood, of each sample. A service completion
triggers a transition from state x to state x+ej,s−ei,r,
where ei,r is a vector of zeros with a one in entry (i, r).
Thus, the number of class-r jobs in station i decreases
by one, while the number of class-s jobs in station j
increases by one.

The transition rate from state x to state x+ej,s−ei,r
is denoted with fr,si,j (x), and its definition is given in
Figure 8. Notice that the transition rates associated
to service completions are adjusted to consider the
PS multi-core case. Thus, when at most V jobs are

2. We refer to this as worker class-switching, to differentiate it
from the user class-switching described in Section 3.1. Worker class
switching will be used only to estimate the likelihood of the sam-
ples, not to capture the user class-switching behavior. This would
require a layered model and additional monitoring information to
parameterize the model. This generalization is left for future work.
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Require: State x = (xi,r), xi =
∑R+1
r=1 xi,r, i ∈ {P,D}

for r, s = 1, . . . , R+ 1 do
Service completion
if xP ≤ V then

fr,sP,D(x) = µrP
r,s
P,DxP,r

else
fr,sP,D(x) = µrP

r,s
P,DV

xP,r

xP

end if
Think time completion
fr,sD,P (x) = λrP

r,s
D,PxD,r

end for

Fig. 8. MC transition rates with worker class switching

present at the processing station, each of the jobs is
assumed to be assigned to a different processor, with-
out contention. When more than V jobs are present,
the service completion rate, as in MLPS, is that of a
single super-processor with processing rate V times
that of an individual processor. The transition rates
associated to think time completions use the rates λr,
estimated as in Eq. (6). As in MLPS, both processing
and think times are assumed to be exponentially
distributed. However, this assumption can be relaxed
to consider Phase-Type (PH) [33] processing and think
times, as the fluid model can better accommodate the
required extended state description without suffering
from the state-space explosion that affects MLPS.

7.1.1 The fluid model

As mentioned above, the MC {X(t), t ≥ 0} cannot
be analyzed directly as in MLPS, due to the state
space explosion. To overcome this issue we intro-
duce a fluid approximation, i.e., an ODE formulation
of the queueing model. This approximation can be
shown to become exact when the number of jobs W
grows asymptotically large. Such asymptotic limit is
obtained as follows. We consider a sequence of QN
models, indexed by k, such that when k → +∞, the
sample paths of the QN models tend to the solution of
a deterministic ODE system. Let {Xk(t)}k∈N+

be the
sequence of QN models such that X1(t) = X(t) (the
QN model defined in the previous subsection), and
Xk(t) for k ≥ 2 is defined as X1(t) with a total popu-
lation of kW jobs and kV servers. The state space of
Xk(t) is thus {x ∈ NMR :

∑
i∈{P,D}

∑R+1
r=1 xi,r = kW}.

As we show in the technical report [34], the se-
quence {Xk(t)}k∈N+ verifies the conditions of [35,
Theorem 3.1], such that the sample paths of the
normalized sequence {Xv(t)/v}v∈N+

converge in prob-
ability to a deterministic ODE system. Informally,
this means that the solution of an ODE system can
be used to approximate the original QN, with the
approximation becoming tighter as v grows large.
Notice that the fluid model is derived using a scaling
argument, where we consider a certain limit for in-
creasing number of servers and jobs, but the resulting

asymptotic ODE system is re-scaled to approximate
the behavior of the original system X1(t). We now
introduce the ODE system for the evaluation of the
FMLPS queueing model.

7.1.2 The ODE system
The state of the ODE system x(t) ∈ RMR that de-
scribes the FMLPS QN model evolves according to

dx(t)

dt
= F (x(t)), t ≥ 0, (7)

where, for any x ∈ RMR, F (x) is the drift of X(t) in
state x, defined as

F (x) =
∑

i∈{P,D}

∑
j∈{P,D}

R∑
r=1

R∑
s=1

(ej,s − ei,r)fr,si,j (x). (8)

The ODE initial state is partitioned as x0 = [xD0 , x
P
0 ],

where xD0 (resp. xP0 ), refers to the initial number of
jobs of each class undergoing a think time (resp. pro-
cessing at a CPU). For sample (n(ti), ri), xp0 is set as

xp0 = [n1, . . . , nk−1, nk − 1, nk+1, . . . , nR, 1],

where k is the class of the admitted job, and we
removed the parameter ti for readability. Notice that
the number of class-k jobs is reduced by one, and this
job is assigned to the tagged class R+1. Additionally,
the initial state of the delay station is set by taking
the total number of jobs not present at the processing
station, W −

∑R
r=1 nr(ti), and assigning them propor-

tionally to the effective admission rate of each class
(βr). The tagged class has zero jobs in the delay node.
The initial state of the delay station is thus set to

xd0 =

[(
W −

R∑
r=1

nr(ti)

)
β∑R
r=1 βr

, 0

]
, (9)

where β is the R × 1 vector with βr as entries. The
routing matrix P is defined in the next section.

7.1.3 Response time distribution
To assess the likelihood of the observed response time
ri with the fluid model we follow a similar approach
as in [36]. This approach consists of defining a tran-
sient class, and letting the jobs (workers) in this class
switch to a non-transient class after processing. As in
MLPS, for a class-k sample we define a tagged class
R+1 and assign the admitted (tagged) job to this class.
Next, we set PR+1,k

P,D = 1, such that, when the tagged
job (worker) finishes, it switches from class R + 1 to
its original class, making the class R+1 transient. For
all the other classes, we set P r,rD,P = P r,rP,D = 1, thus
routing the workers without any class switching.

As in MLPS, we require an expression for the
likelihood L of obtaining a sample (n(ti), ri) given
a set of processing rates µ, which for the fluid model
we express as the response time PDF f̃i(·) evaluated
at ri. To approximate this function we introduce the
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variable y(t), which keeps track of the station visited
by the tagged job at time t, thus y(t) ∈ {D,P} for
t ≥ 0. Let Ri be the random variable describing
the response time of the tagged job associated with
sample i, and let Φi be its cumulative distribution
function. Since, for any t ≥ 0, the event {y(t) = P} is
equivalent to {Ri > t}, we can state

Φi(t) = P (Ri ≤ t) = 1− P (y(t) = P ) .

Further, P{y(t) = P} can be written as the expected
value of the indicator function 1{y(t) = P} since

E[1{y(t) = P}] = 1 · P (y(t) = P ) + 0 · P (y(t) = D) .

Notice that 1{y(t) = P} is the number of tagged
jobs in the processing station, thus being equal to
XP,R+1(t). We can therefore rewrite Φi(t) as

Φi(t) = 1− E [XP,R+1(t)] ≈ 1− xP,R+1(t),

where, as in [36], we make use of the fluid solution
x(t) to approximate the expected value of X(t). Using
this approximation, the response time PDF f̃i(·) is
obtained as the derivative of Φi(·),

f̃i(t) =
dΦi(t)

dt
≈ −dxP,R+1(t)

dt
= −FP,R+1(x(t)),

since, from (7), F (·) is precisely the derivative of x(t).
The likelihood of sample (n(ti), ri) is thus given by
−FP,R+1(x(ri)), obtained by solving the ODE in (7)
between t = 0 and t = ri with initial state x0.

8 VALIDATION

In this section we explore the behavior of the different
methods introduced in the paper. As summarized in
Table 1, we consider a broad range for the number
of processors and the threading ratio W/V . We also
evaluate heterogeneous service demands, by mod-
ifying the ratio µ1/µ2. The number of users N is
set between 20 and 180. From simulations we know
that for 20, 100, and 180 users, the server load is
about 10%, 50%, and 90%, respectively. Recall that the
simulation assumes that the V CPUs are fully shared
among the workers, although we will also consider
a Join the Shortest Queue (JSQ) policy for worker
allocation. As before, we evaluate the estimates with
the absolute relative error, defined in Eq. (2). For the
cases with small (resp. large) number of servers and
threads we consider MLPS (resp. FMLPS), since MLPS
suffers from the state-space explosion while FMLPS is
expected to be more accurate when these numbers are
large due to the fluid approximation.

We also consider different user class-switching be-
haviors, by means of the parameter α, which is the
probability that a job switches class after leaving the
worker thread. In all the results to be presented we
set α = 0.1, making the switching probability matrix
fast mixing. We also considered slow mixing cases,
α = 0.001, but the estimation errors, although slightly
higher, are very similar to those shown here.

TABLE 1
Experimental setup

Symbol Parameter Value
V Number of processors {1, 2, 4, 8, 16}

W/V Threading ratio {2, 4, 8, 16, 32}
R Number of classes {1, 2, 3}

µ1/µ2 Service rate ratio {2, 10, 1000}
α Class Switching Probability {0.1, 0.001}
N Number of users {20, 60, . . . , 180}
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Fig. 9. MINPS - ERPS - V = 2 - W = 8
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Fig. 10. FMLPS - ERPS - V = 8 - W = 64

8.1 Larger sample size
Figure 9(a) shows how MINPS and ERPS provide
similar estimation errors for the case of 2 processors
and 100 samples. However, increasing the sample size
to 1000, as in Figure 9(b), MINPS performs similar to
BL, and much better than ERPS, under low loads. This
is a direct effect of the better performance of MLPS
under low loads, which is inherited by MINPS. Figure
10(a) illustrates the case of V = 8 and W = 64, with a
sample size of 100. FMLPS performs remarkably well,
similar to BL, over the whole load range considered,
while ERPS shows larger errors under low loads. This
effect is amplified when increasing the sample size
to 1000, as in Figure 10(b), where FMLPS performs
significantly better than ERPS, particularly under low
to medium loads. Under high loads the performance
of FMLPS diminishes, probably due to the approxi-
mation introduced to set the number of jobs of each
class initially located at the delay station, cf. Eq. (9).

8.2 Heterogeneous service times
We now consider highly differentiated service times,
setting the ratio µ2/µ1 = 1000, which was equal to 2 in
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Fig. 11. µ2/µ1 = 1000

the previous experiments. We also modify the think
times, keeping the ratio λi/µi fixed, such that each
class accounts for half the server load. This prevents
one class from becoming insignificant with respect to
the other. In Figure 11, we observe that, despite the
significant differentiation, the estimation errors of all
the methods remain very similar to the case µ2/µ1 =2.
Comparing Figures 9(a) and 11(a), we observe a minor
increase for MINPS under medium loads, but the
difference is not statistically significant. In the case of
a large number of processors and threads, in Figures
10(a) and 11(b), we observe a similar behavior for both
ERPS and FMLPS. In this and other experiments we
have observed that the estimation errors are similar
for the different request classes, provided a similar
number of samples for each class is available.

8.3 Non-exponential service times
We now consider the impact of non-exponential
service times on the proposed estimation methods,
since both MLPS and FMLPS assume exponentially-
distributed processing times. This is particularly rele-
vant since the exponential assumption does not nec-
essarily hold in real applications. To this end we
apply the estimation methods, which assume expo-
nential processing times, while in the simulation the
processing times are generated from non-exponential
distributions. We consider two main cases for the
processing times: an Erlang distribution made of five
consecutive exponential phases, resulting in a square
coefficient of variation (SCV) of 0.2; and a hyper-
exponential (HE) distribution made of the mixture of
two exponential phases, which can match any SCV
greater than one [37]. In both cases we keep the same
mean as in the exponential experiments to maintain
the same offered load on the servers.

Figure 12(a) presents the estimation errors under
Erlang service times for the case V = 2 and W = 8.
Under this setup MINPS performs better than in the
exponential case, depicted in Figure 9(a), with estima-
tion errors close to those of BL. ERPS, however, shows
similar results than in the exponential case under low
loads, and improves only under high loads. Figure
13(a) also considers Erlang service times, for the case
V = 8 and W = 64. We highlight the performance
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Fig. 12. MINPS - ERPS - V = 2 - W = 8
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Fig. 13. FMLPS - ERPS - V = 8 - W = 64

of FMLPS, which is as accurate as BL. ERPS instead
presents larger errors under low loads, similar to the
exponential case, depicted in Figure 10(a), while in
high loads it performs as well as BL. The methods
thus handle well hypo-exponential processing times.

Figure 12(b) illustrates the effect of HE service times
with SCV= 2. While the results for both MINPS and
ERPS worsen, their estimation errors are similar to
those of BL, verifying their good performance. Similar
results hold for a large number of processors and
threads, shown in Figure 13(b), where all the methods
show a similar behavior, with a slight advantage for
FMLPS (resp. ERPS) under low (resp. high) loads. No-
tice that the performance of the BL method is affected
by the scatter of the data around its mean, improving
in the hypo-exponential case and worsening in the
hyper-exponential case.

8.3.1 Extending FMLPS to HE processing times
We have observed that further increasing the variabil-
ity of the processing times, beyond an SCV of 2, affects
the accuracy of the ML methods, particularly under
high loads. To handle this case we extend the FMLPS
method to allow for non-exponential, specifically 2-
phase hyper-exponential (HE), processing times. To
this end, we exploit the class-switching assumption,
slightly modifying the ML methods as follows. We
assume 2 classes (k1,k2) for each class k in the model.
For a class-k sample, we assume that it joins the
server as a class-ki request with probability αki . A
class-ki request poses a mean demand (µki )−1 on the
server, and upon completion it leaves the server as
a class-k request. The likelihood of sample (n(tj), rj)
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Fig. 14. HE (SCV=10) - V = 8 - W = 64

is obtained by separately computing the likelihood as
if it was a class-ki request and combining the results
with weights αki . The method thus needs to estimate
three parameters for each class k: µk1 , µk2 , and αk1 , as
αk2 = 1− αk1 .

We illustrate this strategy in Figure 14 by consider-
ing highly-variable processing times with SCV = 10.
The effect of the high variability is evident as all the
methods, including BL, show larger estimation errors.
Increasing the sample size to 500, as in Figure 14(b),
results in smaller errors and a smaller variability in
the estimates. We observe that the modified FMLPS
behaves very well under low to medium loads, but
shows a large error under high loads. ERPS instead
behaves similarly to previous cases, with errors larger
than BL and FMLPS under low loads, and similar
to BL under high loads. The case of high variability
and high load is thus difficult for FMLPS, and in
these cases ERPS is preferable. Another option to
handle high variability is to extend FMLPS to con-
sider PH distributions, which are more flexible and
can approximate long-tailed processing times [38].
The downside is the additional computational effort
needed to estimate a larger number of parameters.
This will be the topic of future work.

8.4 A different scheduling policy

In the previous scenarios the samples were collected
from a simulation where the V CPUs are fully shared,
to represent time-sharing in the operating system
scheduler. For illustration, we now consider a differ-
ent scheduling policy, namely Join the Shortest Queue
(JSQ), to allocate the jobs to the CPUs. Figure 15
depicts the estimation errors under this policy, for the
case V = 4, W = 16, which are only slightly higher
than those obtained under full sharing, depicted in
Figure 7(a). The good performance of our methods is
related to the ability of the JSQ policy to balance the
number of jobs assigned to each processor, although it
is blind to the job size. Simpler allocation alternatives,
such as random allocation, do not have this balancing
property, and the methods presented in this paper are
not well suited for their analysis.
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8.5 Computational cost
The regression-based methods, RPS and ERPS, scale
very well with the number of processors and threads,
since the size of the linear problem that needs to be
solved for the regression depends on the number of
samples only. The ML procedures are instead com-
putationally more expensive. In fact, the key approx-
imation in MLPS was introduced to deal with the
state-space explosion and its effect on the computa-
tion times. FMLPS overcomes this problem with the
fluid approximation, and can therefore tackle prob-
lems with a large number of threads and processors.
Figure 16 compares the execution times of MLPS and
FMLPS for an increasing number of processors, while
keeping the thread-to-processor ratio W/V = 4 and
the number of users N = 140 fixed. This experiment
was performed in a 3.4 GHz 4-core Intel Core i7 ma-
chine, with 4GB RAM, running Linux Ubuntu 12.04.
We observe how, for a small number of processors,
MLPS is about one order of magnitude faster than
FMLPS. However, its execution times increase rapidly
with the number of processors and surpass those of
FMLPS. Instead, FMLPS shows a more stable behav-
ior, with execution times between 1 and 4 min .

9 CASE STUDY I: SAP ERP APPLICATION

In this section we consider a multi-threaded applica-
tion with a small threading level, the ERP application
of SAP Business Suite [19], which runs on top of SAP
NetWeaver [39], a middleware that defines the un-
derlying architecture. Similar to the model in Section
3.1, SAP NetWeaver has an admission control queue
that receives the incoming requests, and dispatches
them to software threads, referred to as work processes
(WPs), for processing. Admission occurs when a WP
becomes idle, based on an FCFS scheme. Thus, the
waiting time in the admission queue tends to become
the dominating component of the response time as the
number of active users becomes large with respect to
the threading level. The operations in the WPs are
CPU-intensive and include calls to a database.

We installed SAP ERP on a two-tier configuration
composed of an application server and a database
server residing on the same virtual machine, with no
other virtual machines running on the same physical
computer. The virtualization software is the VMware
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Fig. 17. SAP - MINPS - ERPS - V = 2

ESX server configured with 32 GB of memory, 230 GB
of storage, and 2 virtual CPUs, running at 2.2GHz
and mapped to separate physical CPU cores. We con-
sider different scenarios varying the number of WPs
W ∈ {3, 6}, and the number of users N ∈ [10, 150],
which correspond to a CPU utilization in the range
[0.03, 0.90]. The users issue requests via a closed-loop
workload generator with exponential think time with
mean 10 s . The workload we consider consists of six
transaction types, related to the creation and display
of sales orders, the creation of billing documents, and
the generation of outbound deliveries.

We use the data collected to estimate the mean
demand with BL, ERPS, and opting for MINPS instead
of FMLPS since the threading level W is small. The
threading level W is small due to the high memory
requirements of the requests. We compare the results
against measurements obtained from the internal pro-
filer of the ERP application (STAD). The measure-
ments of the profiler collect the CPU consumption
per request type, including initialization steps and
database calls. In this case, these execution times are
considered part of the request demand since the WP
is not freed during the database call, and the database
itself is located on the same physical host. Discrimi-
nating these times would require additional monitor-
ing, measuring the times consumed in database calls.

Figure 17 depicts the estimation errors obtained
with 30 experiments, each based on 600 samples. We
observe a small estimation error, particularly for BL
and MINPS, when the number of clients is between
10 and 75. For a larger number of clients, the error
increases to around 20% for BL, and between 20% and
30% for MINPS and ERPS, which show similar results.
Even in this case, both EPRS and MINPS remain very
close to the best achievable error (BL). A first source of
error is in the processing times’ variability, reflected
in an SCV in the range [1.01, 1.72], which is above
that of the exponential, although not very far from
it. Another source of error may be related to the
database calls, which, as mentioned above, are not
explicitly modeled. The proposed methods, in spite
of the simplifying assumptions, are able to provide
useful estimates, especially under low to medium load
scenarios. In these experiments MINPS shows execu-
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Fig. 18. OFBiz - Estimation errors relative to BL

tion times between 1 and 10 min , with an average
under 3 min , while ERPS requires less than 10 ms .

10 CASE STUDY II: OFBIZ

In this section we turn to an application with a
large threading level featuring several tens of con-
currently executing requests. We consider the open-
source Apache OFBiz e-commerce application3, which
has a three-layer architecture, including presentation,
application, and data layers, and uses scripting lan-
guages to generate dynamic content. We generate the
workload with OFBench [40], a benchmarking tool
designed to recreate the behavior of a set of OFBiz
users, generating semantically-correct requests.

We have deployed OFBiz and the OFBench client
on separate Amazon EC2 instances. Different from the
case study in the previous section, the deployment
on a public cloud implies that the VMs used can
be co-located with other VMs on the same physical
host, posing additional challenges to the estimation
methods. The traces collected are used to estimate
the mean resource demand with the BL, ERPS, and
FMLPS methods. In this case, the default maximum
number of threads is 200, and we therefore opt for
FMLPS instead of MINPS. The OFBiz workload con-
sists of 35 request types [40], a number that sig-
nificantly increases the execution times of FMLPS.
We have therefore clustered these classes into four
and eight sets. This approach reflects the practice in
performance analysis of aggregating several requests
types into a few groups with homogeneous business
meaning.

Figure 18 depicts the estimation error obtained with
ERPS and FMLPS, when comparing their estimates
with those obtained with BL. Different from the ERP
application considered in the previous section, no
profiler is available for OFBiz, as is the case with
many applications, restricting the possibility of ob-
taining the values of the actual demands. Further, in
the previous section the deployment was performed
in a private environment, where we could control
that only the application VM was deployed on the
physical host, and the virtual cores were mapped to

3. Apache OFBiz: http://ofbiz.apache.org/
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the physical cores. In this section instead, we consider
a cloud deployment, where no control is provided
over the physical resources, and the actual processing
capacity depends on the current resource usage of
the physical host. As a result, we make use of the
estimates obtained with BL as the basis to compare
the other two methods. These results are for a server
deployed on a c1.medium VM instance, which has 2
virtual CPUs, but we have obtained similar results for
other instance types. The scenarios considered, with
the number of users between 10 and 50, generate an
average utilization between 25% and 65%. We observe
similar estimation errors for both methods, with a
maximum mean error around 20%. In the case with
R = 4 classes, the error is around 10% when the
number of users is between 10 and 30. For 40 and
50 users, the error is around 20%, which is also the
prevalent value for the case with R = 8 classes.

We also observe higher variability in the results,
which is to be expected given the application char-
acteristics and the cloud deployment. As with the
SAP ERP application, we observe that the methods
with limited information, FMLPS and ERPS, provide
estimates that are in generally good agreement with
those provided by BL, which has full information
about the requests’ arrival and departure times. In
the R = 4 case, using 400 samples, FMLPS expe-
riences running times between 2 and 30 min , with
an average close to 9 min . It is thus appropriate for
offline analysis or online use at coarse, e.g. every
hour, timescales. Figure 19 shows how the the FMLPS
execution times increase with the number of classes.
Although feasible, assuming a large number of classes
implies significantly larger computation times, which
can be appropriate for offline analysis only. ERPS
instead executes in under 10 ms , thus being well-
suited for online estimation.

11 CONCLUSION

We have introduced demand estimation methods
for multi-threaded applications with either large
or small threading levels. An implementation of
these methods is available at https://github.com/
imperial-modaclouds/modaclouds-fg-demand. The
methods provide accurate results under different
server setups, including different numbers of

processors, threads, and different server loads. The
MINPS method is well-suited for low threading levels,
while for large threading levels FMLPS (resp. ERPS)
offers better results under low (resp. large) loads.
MINPS is partly based on MLPS, which assumes
a fixed population during the request execution
time. This assumption is removed in FMLPS as the
underlying fluid model is able to model systems
with a large number of requests. In both of the
maximum-likelihood methods we proposed, MLPS
and FMLPS, we make the simplifying assumption
that the response times are independent. Although the
response times are not independent, their dependence
can be reduced by selecting the samples randomly or
well-spaced in time, avoiding response times of jobs
whose execution overlap or that correspond to the
same busy period.

We evaluate the estimation methods proposed by
means of two case studies: an enterprise application
deployed on a local host, and an e-commerce applica-
tion deployed on a public cloud. Cloud deployments
pose additional challenges that require further study,
particularly regarding the variability in the CPU re-
sources effectively available to the application when
other VMs are deployed on the same physical host.
Demand estimation approaches that account for this
variability, without requiring access to hyper-visor
information, could rely on metrics such as the CPU
Steal, which records the time the virtual CPU has to
wait for the physical CPU when the hyper-visor is
busy with other virtual CPU [41]. This will be the
topic of future work.
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