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Abstract—Parallel job processing has become a key feature
of many software applications, e.g., in scientific computing.
Parallelization allows these applications to exploit large resource
pools, such as cloud or grid data centers. However, a job
composed of a large number of parallel tasks will suffer a failure
if any of its tasks fail, requiring reprocessing and additional
delays. In this paper, we explore the effect that the replication
of parallel jobs has on the job reliability and response time,
as well as on resource utilization. The replication mechanism
consists of concurrently processing replicas, at either the job or
the task level, retrieving the results of the replica that finishes
first, if any, and canceling any remaining replica in process. We
propose a stochastic model that explicitly considers parallel job
processing, replication at both the job and the task level, and
handles general arrival processes. We develop a numerically-
efficient algorithm to solve large-scale instances of the model
and compute key performance metrics. We observe that the task
cancellation mechanism offers an effective way of limiting the
increase in resource utilization, allowing the use of replicas that
not only increase the job reliability, but have the potential to
reduce the response times.

I. INTRODUCTION

In the past decade, parallel computing has become a per-
vasive technology that finds applications in a large number of
software systems. In particular, scientific computing applica-
tions heavily rely on parallelization to process large amounts
of data and to perform a large number of operations, exploiting
grid computing resources. Furthermore, many applications
now run parallel subtasks to take advantage of large resource
pools, as those available in private and public data centers, to
offer data-intensive services, e.g. business analytics. Although
each subtask in a parallel job may be highly reliable, the job
reliability decreases with the number of tasks, and a single
subtask failure will make the whole job fail [1].

To overcome this, a common approach is to retry the exe-
cution of a failed subtask, typically after a timeout handled by
a central scheduler. While this approach improves the job re-
liability, it generates additional delays that degrade the quality
of service (QoS) offered by the application, a major issue for
latency-sensitive applications [2]. An alternative is to process
the replicas concurrently, improving the job reliability and
limiting the latency. In fact, this approach has been considered
[3]–[6] to reduce the latency of highly parallel applications,
issuing replicas to diverse resources, and using the result from
whichever replica responds first. Heavy concurrent replication

is also appealing in the light of the low utilization common
in data centers, for example, traces released by Facebook
reveal median CPU and memory utilization under 20% [3].
However, the execution of concurrent replicas may increase the
resource utilization, and the response times, beyond desirable
levels. An approach to limit this effect is to cancel any
outstanding replicas, once the first one completes [5], [7]. In
this paper, we study how this approach, concurrent replication
with canceling, affects both the reliability and latency of
parallel jobs, and the interplay between these two performance
measures.

The contributions of this paper are two-fold. First, we
propose a stochastic model to analyze the performance of
the concurrent replication approach with replica cancellation.
The model employs Markovian Arrival Processes (MAPs)
to represent arrival processes with general inter-arrival times
and correlation. We devise a numerical solution, building on
previous work by [8], that is able to tackle large instances
where traditional methods, including [8], fail or require long
computation times. Second, we explore how the proposed
concurrent replication with canceling impacts the reliability
and response times of parallel jobs. In particular, we find
that this fault-tolerance approach, compared with replication
without canceling, significantly reduces the resource utilization
and delivers a shorter mean response time, making fault-
tolerance via replication more applicable. The two replication
levels considered in this paper, to clone at the granularity of
jobs (job-level replication) or subtasks (task-level replication),
are shown to improve the system reliability. However, task-
level replication achieves a much higher reliability while
introducing a lower load and delivering shorter response times.
Furthermore, task-level replication has the potential to reduce
the response times since the task effective execution time
becomes the minimum of the concurrently-executing replicas.

This paper is organized as follows. Section II reviews
recent related works related, while Section III introduces the
reference model and the replication strategy. The job-service-
time model and results for the single node case under Poisson
arrivals are presented in Section IV. Section V introduces the
general model with multiple nodes under MAP arrivals, and
its efficient numerical solution. The fault-tolerance method
proposed is evaluated in Section VI using a trace from a real
parallel cluster. Section VII concludes the paper.
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Fig. 2: Reference Model

II. RELATED WORK

In parallel jobs, a subtask may fail during service due
to various reasons, such as an error in the input data, the
detection of a present or potential deadlock, communication
failures [9], timeouts of resources with limited availability,
or outputs failing to meet time constraints. Due to the scale
and complexity of large-scale parallel systems, it is infeasi-
ble to eliminate all the possible failures [6]. A traditional
fault-tolerance mechanism to handle request failures is to
re-execute a request after failure, typically after a timeout
[6], [10]. Although effective to handle failures, this approach
introduces additional delays that degrade the QoS offered by
the application. This effect is particularly critical for latency-
sensitive application, for which all subtasks must complete
within a strict deadline, in order for the application to feel
responsive [5]. Several fault-tolerance approaches [1], [11],
[12] have been proposed for processor failures, adopting
redundancy in space and time to improve system reliability.
Instead, the focus of this paper is on the analysis of systems
subject to request failures. Concurrent replication has been
studied recently [3]–[6] to improve latency and reliability.
For instance, [3] proposes to run multiple copies of small
interactive jobs to mitigate the effect of latency, showing a
significant reduction in the mean response time, at a small
cost in additional resources. [4] analytically characterizes the
conditions under which redundant requests help in reducing
latency. [6] demonstrates replication to be an effective way to
achieve robustness under unpredictable failures while limiting
latency. To curb the additional load created by concurrent
replication, [5] proposes to issue multiple job replicas, collect
the results from the replica that responds first, and immediately
cancel any outstanding replicas in process. This approach,
referred to as replication with canceling, was analyzed for
the case of single-task jobs in [7]. In this paper we propose
an analytical model to evaluate this replication approach for
parallel jobs consisting of multiple subtasks.

To model the concurrent execution of replicas for parallel
jobs we make use of split-merge queues [13]. In this class of
queues, as shown in Figure 1, an incoming job arriving at the
split point is split into multiple subtasks if there is no previous
job in the queue and the processors are idle, otherwise, the job
will join the end of the waiting queue. Each subtask arrives
simultaneously at one of the parallel processors to receive
service. The processors are all blocked until all the subtasks
finish service, rejoin and depart from the system. The analysis
of split-merge queues has been focus on the computation of
moments of maximum service time and of distribution of
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Fig. 3: Reference job-level and task-level models

response time. For example, [14] determines analytically the
maximum service time in a split-merge queue with random ex-
ponential service times, and presents an approximation for the
case with general heterogeneous service times. [13] derived the
response time distribution in a split-merge queue with general
service times and Poisson arrivals, by means of order statistics.
These results however do not consider job or task failures,
which are the focus of this paper. Split-merge systems have
been widely used to model systems where synchronization is
central, such as the processing of logical I/O requests in a
queueing model of RAID (Redundant Array of Independent
Disks) systems [14], and in composite web service [15].

III. BACKGROUND

We consider parallel systems comprised of multiple dis-
tributed computing nodes, and a central scheduler, as shown
in Figure 2. Each node is composed of multiple execution
units, or processors, and each node executes a parallel job by
processing each of the job’s subtasks in one of its processors.
When a subtask fails during service, and no replication is
adopted, the whole job fails. We assume that the processor
is not affected by the failure, and continues serving a subtask
of the next job. In order to increase the reliability of a system,
we propose to concurrently process job replicas, and consider
two levels of replication granularity.

A. Replication granularity

We consider the two replication granularity levels proposed
in [3] for parallel jobs. One option is job-level replication,
where for every job submitted to the cluster, multiple replicas
are spawned, as shown in Figure 3(a). Once the result from the
earliest job-replica is obtained, other remaining outstanding
replicas are canceled immediately. Job-level replication is
appealing due to its simplicity, but a job-replica is successful
only if all its subtasks are successful. The alternative is to clone
at subtask level, shown in Figure 3(b), where every subtask
is cloned and the result of its earliest replica is returned,
canceling any outstanding replicas in process. In this case it is
enough that a single replica of each subtask succeeds to have
a successful job completion.

B. Reference model

We consider a central dispatcher, as depicted in Figure 2,
that assigns jobs to the processing nodes in a Round-Robin
(RR) fashion. With the RR algorithm, the jobs are distributed



TABLE I: Transition rates for task-level replication

From To Rate Range
n2, n1 n2 − 1, n1 + 1 2n2α for n2 ≥ 1, n1 ≥ 0
n2, n1 n2 − 1, n1 2n2µ for n2 ≥ 2, n1 ≥ 0
n2, n1 n2, n1 − 1 n1µ for n2 ≥ 0, n1 ≥ 2
n2, n1 F n1α for n2 ≥ 0, n2 ≥ 1

1,1 1,0 µ for n2 = 1, n1 = 1
1,1 0,1 2µ for n2 = 1, n1 = 1
1,0 S 2µ for n2 = 1, n1 = 0
0,1 S µ for n2 = 0, n1 = 1

evenly among the nodes, and no communication is required
between the nodes and the dispatcher about the nodes’ state.
A job joins the end of the queue in front of the corresponding
node, if it is busy, and waits until all the jobs in front are
processed. When a job starts service, each of its n subtasks
is assigned to one of the node’s processors. We assume all
jobs are composed of n subtasks, and refer to this number
as the job size. The subtasks processing times are assumed
to be exponentially distributed with rate µ, while the time to
failure of a single subtask follows an exponential distribution
with parameter α. Notice that, although the subtask service
and failure times are exponential, the job service and failure
times no longer follow an exponential distribution. Consider
a system with c nodes and cn processors in total, such that
it can process c different jobs, each of size n, in parallel. If
one replica is adopted for each job/subtask, then every two
nodes, i.e. 2n processors, can be grouped together to serve a
job and its replica in parallel, allowing the processing of c/2
concurrent jobs. In the next section we consider the single-
node (c = 1) case under Poisson arrivals, and its generalization
to c > 1 nodes and Markovian arrivals is treated in Section V.

IV. SINGLE NODE UNDER POISSON ARRIVALS

In this section, we consider the case of a single process-
ing node under Poisson arrivals. We model systems without
replicas and with both task-level and job-level replications,
considering a single replica only. A key step in the analysis of
this and the next section is showing that the job service and
failure times follow a Phase-Type (PH) distribution.

A. Phase-type distributions

A PH distribution [16] is the distribution of the absorption
time X in a Markov Chain (MC) where the states {1, 2, . . . , n}
are transient and state 0 is absorbing. We denote it as
PH(τ , T ), where τ is the 1×n vector of the initial probability
distribution, T is the n×n sub-generator matrix, and the vector
t = −Te holds the absorption rates, where e is a column
vector with ones. Its cumulative distribution function (CDF)
is F (x) = 1 − τexp(Tx)e, for x ≥ 0, and the expected
absorption time is

E[X] = −τT−1e. (1)

In a single processing node, the job service time is the
interval between the time that all its subtasks enter the node’s
processors, and the time it leaves the node, either with service
completion or failure. In the next sections we show that, under
the assumption of exponential service and failure times for the

subtasks, the job service time follows a PH distribution. We
consider two absorbing states, S and F, representing the cases
where the job completes service successfully or encounters a
failure, respectively. These absorption states have absorption
vectors tS and tF , respectively, such that t = tS + tF .

B. No-replica model

In the no-replica case, if one subtask fails, the whole job
fails. Let Xt be the number of subtasks in service at time t,
and let n be the job size. The service time then follows a PH
distribution with transient states, or phases, {1, 2, . . . , n}. If a
subtask of a job in phase n1 completes service, it leads the
job to phase n1 − 1 with rate n1µ, for n1 ≥ 1. If n1 = 1, the
subtask service completion leads the job to phase S. Instead,
if a subtask of a job in phase n1 encounters a failure, the
service process jumps to phase F with rate n1α. When a job
completes service or fails, the next job is injected into the
node’s processors with initial service phase n.

C. Task-level replication

For task-level replication, we define the service state to
be (Xt, Yt), where Xt is the number of subtasks with both
replicas still in service, and Yt is the number of subtasks with
one failed replica at time t. For a job with n subtasks, we have
n(n+ 3)/2 transient states in total. The transition rates of the
sub-generator matrix T are shown in Table I. For instance,
from state (n2, n1), n2 ≥ 1, n1 ≥ 0 either one of the two
replicas of the n2 subtasks may encounter a failure, making
the service process jump to state (n2 − 1, n1 + 1) with rate
2n2α. As an example, for a system with job size two, the
generator matrix Q = [T |tS , tF ] of the service process is

(2,0) (1,1) (1,0) (0,2) (0,1)
... S F



(2,0) −4β 4α 4µ 0 0
... 0 0

(1,1) 0 −3β µ 2α 2µ
... 0 α

(1,0) 0 0 −2β 0 2α
... 2µ 0

(0,2) 0 0 0 −2β 2µ
... 0 2α

(0,1) 0 0 0 0 −β
... µ α

,

where β = α+µ. Notice the upper-triangular structure of the
matrix T , which results from ordering the state space lexico-
graphically. This structure will be exploited in the numerical
method proposed in Section V.

D. Job-level replication

For job-level replication, we track the number of subtasks
in service for both the original job and its replica as (Xt, Yt),
at time t. To limit the state space, Xt is always the number
of subtasks of the job-replica with more subtasks in service,
resulting in n(n + 3)/2 phases for n subtasks. Notice that
when Yt equals 0 either the job or its replica has failed while
the other is still in service. For instance, if the service process
is in state (n2, n1), n2 > n1 ≥ 1, and one of the subtasks of



TABLE II: Transition rates for job-level replication

From To Rate Range
n2, n1 n2, n1 − 1 n1µ for n2 > n1 ≥ 2
n2, n1 n2, n1 − 1 2n1µ for n2 = n1 ≥ 2
n2, n1 n2 − 1, n1 n2µ for n2 > n1 ≥ 1
n2, n1 n2, 0 n1α for n2 > n1 ≥ 1
n2, n1 n1, 0 n2α for n2 > n1 ≥ 1
n2, n1 n2, 0 2n1α for n2 = n1 ≥ 1
n2, 0 n2 − 1, 0 n2µ for n2 ≥ 2, n1 = 0
n2, 0 F n2α for n2 ≥ 1, n1 = 0
n2, 1 S µ for n2 ≥ 2, n1 = 1
1,1 S 2µ for n2 = 1, n1 = 1
1,0 S µ for n2 = 1, n1 = 0

the job with the least number of subtasks in process fails, the
service process jumps to state (n2, 0) with transition rate n1α.
The transition rates for this case are summarized in Table II.

E. Performance measures

For Poisson arrivals we analyze the single-node system as
an M/G/1 queue with FCFS scheduling [17]. Let X denote
the effective service time of an arbitrary job, either failed or
successful, and E[X] its expected value, obtained as in Equa-
tion (1). Denoting B∗(S) the service time Laplace transform,
the waiting time Laplace transform W ∗q (S) [18] is thus

W ∗q (S) =
s(1− ρ)

s− λ+ λB∗(S)
,

where λ is the job arrival rate, and the utilization ρ = λE[X].
The probability PS that a job completes service successfully

is given by PS = τ (−T )−1tS , where the term (−T )−1tS cap-
tures the service process transitions and the eventual successful
completion. The probability of failure PF can be obtained
similarly. The mean waiting time E[Wqi] and mean response
time E[Ri] for successful and failed jobs (i ∈ {S, F}) are
given by

E[Wqi] = −
dW ∗q (s)

ds
|s=0,

E[Ri] = E[Wqi] + 1/µi,

where the service rates are given by µS = τ (−T )2tS/PS and
µF = τ (−T )2tF /PF , respectively.

V. MARKOVIAN ARRIVALS AND MULTIPLE NODES

In this section we consider more general arrival processes
and multiple computing nodes. We first focus on the single-
node case where the arrivals follow a Markovian arrival
process (MAP), and then extend this model to the multi-node
case under RR scheduling. MAPs were introduced [19] as
a generalization of PH distributions, to represent correlated
point processes with PH inter-event distributions. Queueing
systems with PH or MAP components give rise to generator
matrices with a block structure. The model presented in this
section falls in this category, specifically as a Quasi-Birth-and-
Death (QBD) process [16]. In the next sections, we provide an
introduction to QBDs, and model the single-node with MAP
arrivals as a QBD. Next we introduce a method to solve large
instances of the model, exploiting the inner block structure.

A. Quasi-Birth-and-Death processes

A continuous-time QBD process [16] is a two-dimensional
MC {(Nt, Jt), t ≥ 0}. Nt is the level variable, which takes
values on N, and Jt is the phase variable, which takes values
on the set {1, 2, . . . ,m0} for level 0, and on {1, 2, . . . ,m} for
other levels. The one-step transitions are independent of the
level n for n > 1, and restricted to states in level n′, where
n′ = n− 1, n, n+ 1. The QBD infinitesimal generator has the
form

Q =


B1 B0 0 0 · · ·
B2 A1 A2 0 · · ·
0 A0 A1 A2 · · ·
0 0 A0 A1 · · ·
...

...
...

...
. . .

 ,

where the matrices A0 and A2 are non-negative and carry the
transition rates from level i to level i− 1 and i+ 1, for i > 0
and i > 1, respectively. The matrices A1 and B1 have non-
negative off-diagonal elements, and strictly negative diagonals,
holding the transition rates within level i, for i > 0 and i = 0,
respectively. The matrices B0 and B2 are non-negative, and
hold the transition rates from level 0 to level 1, and from level
1 to level 0, respectively. In the single-node system, the level
variable Nt is the number of jobs in the node, waiting and in
process, at time t, and the phase variable Jt carries the state
of the service and the arrival processes.

B. Markovian Arrival Processes

The continuous-time MAP [16] is a marked Markov process
with generator D = D0 + D1, where the elements of D0,
resp. D1, represent transitions without, resp. with, arrivals. D1

is a non-negative matrix, and D0 has non-negative off-diagonal
entries and strictly negative diagonals, with (D0 +D1)e = 0.
The arrival rate is given by

λ = γD1e, (2)

where γ is the stationary distribution of the underlying MC,
i.e. γD = 0 and γe = 1. A MAP can represent a renewal
process with PH(σ, S) inter-arrival times by setting D0 = S
and D1 = sσ, where s is the exit vector s = −Se.

The single processing node with MAP arrivals can be
modeled as a QBD with blocks

B1 = D0, B0 = τ ⊗D1,

B2 = t⊗ Ima
, A0 = tτ ⊗ Ima

,

A1 = T ⊗ Ima
+ Ims

⊗D0, A2 = Ims
⊗D1,

(3)

where ⊗ stands for the Kronecker product [20], and (τ , T )
are the parameters of the service PH distribution, as described
in Section IV. The blocks size, i.e. the size of the phase space,
is m = mams, where ma and ms are the number of phases
in the arrival and service processes, respectively.



C. Computing the stationary distribution

Let π be the steady state distribution of the MC with
generator Q, which we partition conformally with Q, i.e.,
π = (π0,π1,π2, . . . ). The stationary distribution, if it exists,
can be found as πi = πiR, where R can be obtained from
R = A2(−A1 −A2G)−1, and G is the minimal non-negative
solution of the matrix equation [16]

A0 +A1G+A2G
2 = 0. (4)

Many iterative algorithms have been developed to solve this
equation, including Functional Iterations (FI), Logarithmic
Reduction, and Cyclic Reduction (CR) [16], [21]. However,
if the phase space is large, the solution of these equations
becomes computationally expensive, as each iteration requires
O(m3) time. In the next section we introduce a solution
method that exploits the inner structure of the blocks A0, A1,
and A2, to reduce the computation and memory requirements,
allowing the solution of large-scale models.

D. Exploiting restricted transitions

The solution method we propose to solve the QBD model
with blocks described in Equation (3) relies on three obser-
vations. First, a job always starts service in the first phase
of the service process, such that the initial probability vector
is τ = [1, 0, · · · , 0], thus the downward matrix A0 has only
r = ma nonzero columns. Second, the service matrix T has an
upper-triangular structure, which causes the matrix A1 to have
a block-upper-triangular structure, where each block is of size
r. Third, the independence of the arrival and service processes
implies that the matrix A2 has a block-diagonal structure,
where each block is of size r and equal to D1. Based on these
observations, we build upon the solution method proposed in
[8] to exploit the inner structure of the QBD blocks. The work
in [8] exploits the structure of matrix A0 (r nonzero columns)
by partitioning the phase space into two sets, of size r and
m − r respectively. While the reduction in computation time
[8] is significant, it still has to operate on matrices of size
m − r, which can be very large. Our proposal consists of
exploiting not only the structure of A0, but also that of A1

and A2, by partitioning the phase space into m/r sets of size
r. As a result, the method operates on small matrices of size
r, significantly reducing the time and memory requirements.

We partition the phase space as S = {S+, S1, S2, · · · , Sw},
where w = (m− r)/r, and write the QBD blocks as

A0 =


A++

0 0
A1+

0 0
A2+

0 0
... 0

Aw+
0 0

 , Ai =


A++

i A+1
i A+2

i · · · A+w
i

0 A11
i A12

i · · · A1w
i

0 0 A22
i · · · A2w

i
...

...
...

. . .
...

0 0 0 · · · Aww
i

 , (5)

for i = 1, 2, where each sub-block is an r × r square
matrix. Notice that, although in our problem, the matrix A2 in
Equation (3) is block triangular, we consider the more general
block upper-triangular case, as this is sufficient to obtain the
most significant gains in computation times. Further, from [8]

we know that, due to the structure of A0, the matrix G has
the structure

G =


G+ 0
G1 0
...

...
Gw 0

 , (6)

where G+ and Gp (p = 1, · · · , w) are r × r matrices. In the
next section we show how to compute G+.

1) Computing G+: As in [8], we define a new process by
observing the QBD process only when the phase variable Jt is
in S+. Since A0 has only r nonzero columns, any downward
transition triggers the phase to a state in S+. Therefore the
new process can only move one level down, but several levels
up, in each transition. Hence, the new process is of the M/G/1
type [22], which can be seen as a generalization of a QBD
MC, where the level is allowed to skip several levels in the
upward direction, but to decrease only to its adjacent level in
a single transition. The generator matrix Q̄ of the new process
is of the form

Q̄ =


B̄0 B̄1 B̄2 B̄3 · · ·
Ā0 Ā1 Ā2 Ā3 · · ·

Ā0 Ā1 Ā2 · · ·

0
. . . . . .

 .
The stationary distribution of this process can be found using
Ramaswami’s formula [23], which depends on the matrix Ḡ,
i.e. the minimal non-negative solution of the matrix equation

Ḡ =

∞∑
k=0

ĀkḠ
k. (7)

The matrix G+ is equal to Ḡ, since both hold, in their (i, j)th
entry, the probability that the original QBD MC visits level
n for the first time, starting from state (n + 1, i), by visiting
state (n, j), with i, j ∈ S+.

To specify the blocks of the M/G/1-type MC, let the (i, j)-th
entry of the r× r matrix Kl,p hold the probability that, given
that the original process starts in state (n, i), with i ∈ Sp,
p ∈ {1, 2, · · · , w}, its first transition to a state with phase
in S+ is to the state (n + l, j), for j ∈ S+, n > 1 and
l ∈ {−1, 0, 1, · · · }. The matrices (Kl,p)l≥−1 are given by

K−1,p = (−App
1 )
−1
(
Ap+

0 +
w∑

q=p+1

Apq
1 K−1,q

)
,

K0,p = (−App
1 )
−1
(
Ap+

1 +
w∑

q=p

Apq
2 K−1,q +

w∑
q=p+1

Apq
1 K0,q

)
,

K1,p = (−App
1 )
−1
(
Ap+

2 +
w∑

q=p

Apq
2 K0,q +

w∑
q=p+1

Apq
1 K1,q

)
,

Kl,p = (−App
1 )
−1
(

w∑
q=p

Apq
2 Kl−1,q +

w∑
q=p+1

Apq
1 Kl,q

)
, l ≥ 2.

K−1,p is the probability that the original process starts in
level n and phase in Sp and moves to state (n − 1,+) after



spending some time in the states of this level with phases in
{Sp, · · · , Sw}. Although the chain could visit a state in level
n + 1 with phase in {Sp, · · · , Sw}, for the process to visit
level n − 1, it first needs to go back to level n by visiting a
state with phase in S+. This would make the first visit to a
state with phase in S+ to be in level n, and not in level n− 1
as required. The other matrices can be defined similarly. The
matrices Kl,p are sequentially computed from p = w to 1.

We now define the block matrices (Āk)k≥0 using the
(Kl,p)l≥−1 matrices. Let the (i, j)-th entry of Āk hold the
probability that, given that the original process starts in state
(n, i), with i ∈ S+ and n > 1, its first transition to
another state with phase in S+ is to (n + k − 1, j), with
k ∈ {0, 1, 2, · · · }. Hence,

Ā0 = A++
0 +

w∑
p=1

A+p
1 K−1,p,

Ā1 = A++
1 +

w∑
p=1

A+p
1 K0,p +

w∑
p=1

A+p
2 K−1,p

Ā2 = A++
2 +

w∑
p=1

A+p
1 K1,p +

w∑
p=1

A+p
2 K0,p

Āk =

w∑
p=1

A+p
1 Kk−1,p +

w∑
p=1

A+p
2 Kk−2,p, k ≥ 3.

To define Ā0, we observe that the transition from state (n, i) to
state (n−1, j), with i, j ∈ S+, can only happen in two ways:
the chain can go directly to level n− 1 by visiting a state in
phase S+; or the chain can go to a state in level n with phase in
{S1, · · · , Sw}, and after a sojourn within these states, it moves
downward to a state with phase in S+. An upward transition
to level n+1 is not allowed as it would require an intermediate
visit to a state in level n and phase in S+. The other matrices
can be defined similarly. The matrices Āk are sequentially
computed from k = 0 to c, where c is the smallest positive
integer that satisfies

∑c
i=0 Āke > (1− ε)e, where ε = 10−14.

Notice that it suffices to store two sets of Kk,p matrices at a
time in order to compute Āk, with p ∈ {1, 2, · · · , w}.

2) Computing Gp (p = 1, · · · , w): Given the structure
of A0, A1, A2, and G, shown in equations (5) and (6),
Equation (4) can be written block-wise as

Gp + (App
1 )−1App

2 GpG+

= (−App
1 )−1

(
Ap+

0

w∑
q=p+1

(Apq
1 Gq +Apq

2 GqG+)

)
,

for p = 1, 2, . . . , w. As a result, we can find the matrices
Gp by solving these Sylvester matrix equations, starting from
p = w and operating backwards. Since there are w equations,
and each of them can be solved in O(r3) time with the
Hessenberg-Schur method [24], the overall computation time
to find the Gp matrices is O(wr3). Instead, the method in [8]
requires O(w3r3) time, which limits the values of w that can
be considered. In fact, under replication, w grows quadratically

with the number of substasks, making necessary the analysis
of instances with large w.

Remark 1: Notice that the solution method proposed here
is not restricted to the case of parallel jobs considered in
this paper. For instance, using the results in [25], any acyclic
PH distribution (APH) can be transformed to have an entry
vector τ with all the mass in the first phase, and an upper-
triangular matrix T . Thus, any MAP/APH/1 queue will fit
within our assumptions regarding the structure of the QBD
blocks. Also, the block upper-triangular structured assumed
for A1 and A2 can be exchanged by a block lower-triangular
structured, without losing the computation gains obtained.

E. Performance measures

After obtaining the matrix G, we can compute the matrix R
and the stationary distribution {πi}i≥0. The average number
of jobs in the node E[N ] is then

E[N ] = π1(I −R)−2e.

From Little’s law [18], the mean number of jobs waiting in the
queue, E[Nq], and the expected response time of successful
and failed jobs, E[Ri] (i ∈ {S, F}) can be computed as

E[Nq] = E[N ]− E[S]/E[A],

E[Ri] = E[Nq]E[A] + 1/µi.

Here E[A] = 1/λ, with λ as defined in Equation (2), is the
mean inter-arrival time, and E[S] is the mean job service time,
obtained with Equation (1).

F. Computation times

To illustrate the behavior of the proposed solution approach,
named ST, we compare its computation times with traditional
methods, such as FI and CR, and with the method in [8], re-
ferred to as RT. The experiments were performed in MATLAB,
using the SMCSolver tool [21], using an Intel Core i7-3770
machine, running at 3.4 GHz and with 16 GB of memory. We
consider jobs with 50 and 100 subtasks, service rate µ = 1,
and failure rate α = 0.1. For the arrival process, we consider
renewal processes with Erlang-2 (E2) and hyper-exponential
with two phases (H2) inter-arrival distributions, and general
order-2 MAPs (MAP2). We thus cover a broad range of behav-
iors in terms of variability, measured by the squared coefficient
of variation (SCV), defined as C2

X = V ar[X]/E2[X], for a
random variable X . The E2 and H2 distributions represent
the C2

X < 1 and C2
X ≥ 1 cases, respectively, while the MAP2

considers the autocorrelated case. The parameters of the H2

distribution are computed using the moment-matching method
in [26], while the matrices D0 and D1 of the MAP are obtained
with the method in [27]. We consider MAPs with decay rate
of the autocorrelation function equal to 0.9, and SCV equal to
2 and 10. With these parameters, the size of the phase space is
m = 2650 for 50 subtasks and m = 10300 for 100 subtasks,
while the number of nonzero columns in A0 is r = 2 for
both cases. We focus on task-level replication as the results
are similar for the job-level case.



TABLE III: Computation times (sec) for jobs with 50 subtasks

Arrivals ρ CR FI B1 Gp Total Ratio
RT ST RT ST RT ST RT ST

E2

0.2 85.4 87.72 3.0 0.2 4.8 0.2 7.9 0.4 10.8 213.5
0.5 95.2 145.1 3.1 0.4 4.8 0.2 7.9 0.6 12.1 158.7
0.9 95.2 665.5 3.2 0.5 4.8 0.2 8.0 0.7 11.9 136.0

H2

(C2
X = 2)

0.2 83.1 132.5 3.1 0.3 4.9 0.2 8.0 0.5 10.4 166.2
0.5 107.5 273.9 3.2 0.5 4.8 0.2 8.0 0.7 13.4 153.6
0.9 107.7 1702.3 3.2 0.68 4.8 0.2 8.1 0.9 13.3 119.7

MAP2

(C2
X = 2)

0.2 82.9 132.8 3.3 0.4 4.9 0.2 8.2 0.5 10.1 165.8
0.5 107.3 273.9 3.3 0.5 4.9 0.2 8.1 0.7 13.2 153.3
0.9 107.7 1707.3 3.2 0.76 4.9 0.16 8.2 1.0 13.1 107.7

H2

(C2
X = 10)

0.2 95.1 160.6 3.1 0.41 4.9 0.2 8.0 0.6 11.9 158.5
0.5 119.9 579.3 3.2 0.6 4.9 0.2 8.1 0.8 14.8 149.9
0.9 107.4 2156.9 3.4 0.9 4.8 0.2 8.3 1.1 12.9 97.6

MAP2

(C2
X = 10)

0.2 95.3 160.6 3.3 0.4 4.8 0.2 8.1 0.6 11.8 158.8
0.5 119.7 578.9 3.2 0.6 4.9 0.2 8.1 0.8 14.8 149.6
0.9 107.6 7337.4 3.3 0.84 4.8 0.17 8.1 1.1 13.3 97.8

TABLE IV: Computation times (sec) for jobs with 100 sub-
tasks

Arrivals ρ
B1 Gp Total RatioRT ST RT ST RT ST

E2

0.2 159.8 1.9 270.7 1.1 430.5 3.1 138.9
0.5 159.6 3.6 278.8 1.1 438.4 4.7 93.3
0.9 161.4 5.1 283.9 1.1 445.3 6.3 70.7

H2

(C2
X = 2)

0.2 159.3 3.6 281.1 1.1 440.7 4.3 102.5
0.5 160.6 4.8 281.6 1.1 442.2 5.9 74.9
0.9 162.5 7.1 284.5 1.1 447.1 8.3 53.9

MAP2

(C2
X = 2)

0.2 159.3 3.4 280.6 1.1 439.9 4.5 97.8
0.5 160.2 5.8 280.1 1.1 440.4 7.0 62.9
0.9 163.3 7.2 296.2 1.1 459.6 8.6 53.4

H2

(C2
X = 10)

0.2 160.0 3.6 280.7 1.1 440.8 4.7 93.8
0.5 160.8 5.6 280.6 1.1 441.4 6.7 65.9
0.9 163.5 7.7 289.1 1.1 452.6 8.8 51.4

MAP2

(C2
X = 10)

0.2 160.1 4.1 280.7 1.1 440.7 5.2 84.8
0.5 161.2 6.6 282.7 1.1 443.9 7.7 57.6
0.9 166.2 7.7 290.4 1.1 456.9 8.8 51.9

Table III summarizes the results for the case of 50 subtasks.
The rows in Table III consider the different arrival processes
and load levels ρ. The first two columns show the time to
compute G using CR and FI on the full-size QBD. The next
two columns show the time to compute the M/G/1-type blocks
using the RT and ST approaches. We observe that ST offers
shorter computation times, although the largest gain in this
case is shown in the next two columns, which show the
time to find the Gp matrices with the RT and ST methods.
Here we observe a significant gain, as the computation times
with our ST method are one order of magnitude smaller than
with the RT method. The next two columns summarize the
total computation times required by the RT and ST methods,
showing the significant advantage of ST over RT. These results
are compared with the traditional CR in the last two columns,
where we depict the ratio between the column CR and the
(Total) columns RT (R-RT), and ST (R-ST), respectively. The
computation times with the ST method are 97-214 times
shorter than with the CR method, while the RT method offers
a reduction of only 10-15 times.

Table IV shows similar results for the 100 subtask case,
although in this case no results are reported for the CR and FI
algorithms as they run out of memory due to the large size of
the QBD blocks. Notice that these and all the algorithms are

implemented in MATLAB using the same data structures. We
show instead, in the last column, the ratio between the columns
RT and ST (R-RS). We observe that the ST method produces
results 51-139 times faster than RT. Notice that in this case
both the computation of blocks and of the Gp matrices show
very important reductions when using ST instead of RT.
Comparing Tables III and IV, we notice that when the number
of subtasks increases, the time to compute the M/G/1-type
blocks of both the RT and ST methods, and the time to find
the Gp matrices increase. This is caused by the increase in the
phase space due to the larger number of subtasks. Also, when
the utilization ρ increases, the FI algorithm and both methods
for computing the M/G/1-type blocks require longer times,
since a larger load increases the rate of upward transitions per
time unit.

Another gain with the proposed approach is the significant
reduction in memory requirements, since it divides the m×m
matrices into small non-zero r × r blocks. On the machine
described, this method is able to solve systems with block size
up to 40000. We also highlight that the proposed approach
offers a good numerical behavior, which we measure with
the residual error of Equation (4), ‖A2 + A1G + A0G

2‖∞,
using the infinity norm. In all the experiments conducted, the
residual error was below 10−14, revealing the good numerical
behavior of the proposed approach. This behavior is expected
since the CR and the Hessenberg-Schur methods on which
the approach relies are numerically stable, and all the steps
are based on sums and products of positive quantities.

G. The multi-node system

Based on the analysis of a single node, we now consider
the case of multiple nodes with a central RR scheduler. The
key observation is that the RR scheduling affects the arrival
process, but this process is still a MAP. As a result, we can
focus on a single tagged processing node, by appropriately
modifying its arrival process. The new process is a MAP with
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Fig. 4: The effect of different arrival process

matrices C0 and C1 given by

C0 =


D0 D1 . · · ·
. D0 D1 · · ·
...

...
. . . . . .

. . · · · D0

 , C1 =


0 0 · · · 0
0 0 · · · 0
...

...
. . . 0

D1 0 · · · 0

 .
These matrices are of size cma, where c is the number of
nodes, and such that a new arrival to the tagged node will only
occur after c− 1 jobs have been assigned to each of the other
nodes. Notice that now the QBD blocks size increase by a
factor c, making more relevant the use of the proposed method
to analyze large instances, as traditional methods would be
limited by the block size.

VI. RESULTS AND DISCUSSION

A. Case Study: RICC Log
In this section, we evaluate the proposed fault-tolerance

approach using the workload log from a real parallel cluster.
We make use of the log of RICC (RIKEN Integrated Cluster
of Clusters) [28], available on the Parallel Workloads Archive
[29]. This log contains a total of 447,794 records of jobs
submitted to the RICC installation in Japan from May to
September 2010. We make use of the trace to parameterize
our model, estimating a subtask service rate of µ = 0.9015
and a failure rate of α = 0.0171. Moreover, given the
high variability observed in the job inter-arrival-times, we
consider PH-distributed inter-arrival times. Specifically, we use
the method in [30], as implemented in the jPhase package
[31], to find a hyper-exponential distribution with r phases
(Hr). Table V shows the mean relative error between the
trace empirical CDF and the fitted CDF of the exponential
and hyper-exponential distributions. We observe how the error
decreases with the number of phases, but the improvement is
limited for 6 or more phases. We therefore choose an H5

representation, and show in Figure 4(a) the complementary
CDF (CCDF) of the real trace, the exponential and the H5

distribution. Clearly, the H5 distribution captures the trace
behavior much better than the exponential, especially its long
tail.

To illustrate the impact of the hyper-exponential arrivals,
in Figure 4(b) we compare the average response times of a
system with task-level replication and three different inter-
arrival distributions while keeping the mean inter-arrival time

TABLE V: Absolute error (%) of different arrival processes

Distribution % Err Distribution % Err Distribution % Err
Exp 2.87 H2 1.01 H3 0.34
H4 0.11 H5 0.07 H6 0.06
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Fig. 5: Effect of replication with failure rate α = 1.7E−2

fixed. The response times are similar under low loads but
significantly different for medium and large loads, highlighting
the influence of the arrival process variability on the system
performance. For this and the following results, we consider
a system with 2048 processors grouped in 32 nodes, each
with 64 processors, serving jobs with 64 subtasks. When
introducing replicas, the processors are grouped into 16 nodes,
each with 128 processors, serving jobs and their replicas.

In order to illustrate the behavior of the proposed fault-
tolerance approach, we compare the reliability, utilization and
average response time of the system without replication, and
with task-level and job-level replications. As replication is
expected to be adopted under underutilized conditions, we
scale the mean arrival rate such that the system without
replicas has three utilization levels: 0.1, 0.2 and 0.3.

The reliability of the system without replica, and with job
and task level replications is 30.04%, 51.05% and 97.81%,
respectively, i.e., the reliability improves by 226% using
task-level replication, and 70% using job-level replication.
Although the failure rate of a single subtask is relatively low,
the reliability of the system without replicas or with job-level
replication is low because a single subtask failure causes the
failure of a whole job or its replica. This is not the case under
task-level replication as the job only fails if both a subtask
and its replica fail.

Figure 5(a) depicts how the utilization for job-level repli-
cation is larger than for task-level replication, and the impact
this has on the response times is shown in Figure 5(b). We
observe how the larger utilization for job-level replication
causes the response times to shoot up when the utilization
of the system without replica is 0.3. In fact, the response
times are 3 times larger than for task-level replication. Notice
that the no-replica case shows short response times because
these correspond to jobs that complete service successfully,
and given the low reliability of this scenario, only short jobs
can complete without failure. Further, under a 0.1 utilization
for the no-replica case, the response times for task-replication
are 26% shorter than for the no-replica mode, but these become
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Fig. 6: Effect of replication with failure rate α = 1.7E−3
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Fig. 7: Replication with and without canceling

larger for larger utilizations. This is because the introduction
of replicas has two effects: it increases the resource utilization,
leading to an increase of the response times; and at the
same time it allows the selection of the first replica that
finishes, potentially reducing the response times. If the overall
reliability is low, as is the case here for job-level replication,
then one of the replicas will likely fail and the first effect will
be dominant, causing an overall increase of the response times.
In fact, the reduction in response times is more significant
when the subtasks are more reliable, and under a relatively
low load, as illustrated in Figure 6. Here we reduce the failure
rate by an order of magnitude to α = 1.71E−3, increasing the
reliability of the system without replica, and with task and job-
level replications to 88.58%, 99.98% and 98.70%, respectively.
As shown in Figure 6, the reduction in the mean response time
for task-level replication, compared to the no-replica case, is
more significant, being 45%, 40%, and 33% less for the three
utilization levels considered, respectively.

B. Comparison with no canceling modes

We now compare the proposed replication methods with
canceling with their counterparts without canceling. We found
that, considering the setup based on the case study, the system
with task-level replication, but without canceling, was already
unstable when the no-replica system utilization was just 0.2.
This highlights the importance of the replica cancellation
scheme to limit the resource utilization. We therefore focus
here on a simpler setup in the following results, with 12
nodes, job size 10, service rate µ = 2.5, failure rate α = 0.1
and Poisson arrivals. The results of the replication-without-
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Fig. 8: Multiple replicas under task-level replication

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Utilization of No-replica Mode

R
es

ou
rc

e
U

til
iz

at
io

n
0 1 2 3 replicas

(a) Resource utilization

0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

Utilization of No-replica Mode

A
vg

.R
es

po
ns

e
Ti

m
e

(S
E

C
)

0 1 2 3 replicas

(b) Response time

Fig. 9: Multiple replicas under job-level replication

canceling case are obtained using a simulation model imple-
mented in Java, considering three different utilization levels
for the system without replication: 0.1, 0.2 and 0.3.

Although both approaches, with and without canceling, have
the same reliability, their response time and utilization differ,
as illustrated in Figure 7. As expected, the utilization and
average response time without canceling are higher than with
canceling. In particular, we observe how, when the no-replica
utilization is 0.3, the response time increases dramatically for
the task-level replication without canceling. This is caused by
the high resource utilization achieved under the no-canceling
mode, which is about twice that of the canceling mode.
Again, this highlights the impact that canceling has when
implementing the concurrent replication scheme.

C. The effect of additional replicas

We now consider the possibility of adding more than one
replica, and its effect on the system reliability and perfor-
mance. Figure 10 shows how the reliability increases as the
number of replicas increases. For task-level replication, the
improvement in reliability is significant after adopting a single
replica, but is limited when considering more replicas. Instead,
in job-level replication, adopting more replicas considerably
increases the system reliability. Figures 8 and 9 show the
system utilization and average response time for varying
number of replicas for task-level and job-level replications,
respectively. The results not shown correspond to cases where
the expected utilization with replication exceeds 1.0. This
is actually the case for job-level replication when the no-
replica utilization is 0.3 and 0.4. Interestingly, for task-level



System Reliability (%)

Ta
sk

-l
ev

el
Jo

b-
le

ve
l

67.52

67.52

98.52

89.48

99.94

96.57

99.99

98.91

0 1 2 3 replicas

Fig. 10: Reliability under different replication techniques and
multiple replicas

replication, we observe how the utilization and response times
actually decrease with the addition of replicas. As mentioned
before, this is caused by the high reliability achieved and the
availability of multiple copies of the same subtask, from which
the first one that finishes determines its completion time, and
cancels its replicas. A different trend is observed under job
replication, where the reliability is lower and the utilization
higher, significantly increasing the response times.

Job-level replication is inefficient, albeit being simpler to
implement. On the other hand, task-level replication is desir-
able when considering the significant improvement of reliabil-
ity, resource efficiency and low latency. Given the efficiency
of task-level replication in exploiting the concurrent replicas,
it appears enough to adopt a single replica. Furthermore, the
adoption of more replicas also implies a higher overhead to
oversee their execution and proceed to cancel the outstanding
replicas when the first of them completes its service.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have evaluated the ability of concurrent

replication with canceling to improve the reliability of parallel
systems subject to request failures. The exact analysis of
this system is performed using a stochastic model, for which
we develop a numerical solution method that is able to
tackle large instances effectively. We demonstrate that task-
level replication with canceling offers an effective way of
improving the system reliability, with the potential to reduce
latency, while limiting the increase in resource utilization.
Since important performance metrics can be efficiently derived
by using the proposed method, users or service providers can
decide whether to adopt replicas or not depending on their
service level agreements. In the future, we intend to investigate
the performance of the proposed approach, and the overhead of
the replication and cancellation mechanisms, by implementing
it in a real parallel system.
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