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Abstract—Service providers face the challenge of meeting
service-level agreements (SLAs) under uncertainty on the appli-
cation actual performance. The performance heavily depends
on the characteristics of the hardware on which the application
is deployed, on the application architecture, as well as on the
user workload. Although many models have been proposed for
the performance prediction of software applications, most of
them focus on average measures, e.g., mean response times.
However, SLAs are often set in terms of percentiles, such
that a given portion of requests receive a predefined service
level, e.g., 95% of the requests should face a response time
of at most 10 ms. To enable the effective prediction of this
type of measures, in this paper we use fluid models for the
computation of the probability distribution of performance
measures relevant for SLAs. Our models are automatically
built from a Palladio Component Model (PCM) instance,
thus allowing the SLA assessment directly from the PCM
specification. This provides an scalable alternative for SLA
assessment within the PCM framework, as currently this is
supported by means of simulation only.

Keywords-Service-level agreements, Application Perfor-
mance, Palladio Component Models

I. INTRODUCTION

Quality of Service (QoS) plays a central role in the
effective delivery of IT services, and its degradation can
become a serious drawback for the service provider. In many
cases the QoS offered must comply with strict service-level
agreements (SLA), which impose limits on specific per-
formance metrics. Cloud computing offers great flexibility
for application deployment, as the required resources can
be used on a pay-as-you-go basis. This flexibility allows
the effective management of QoS for cloud applications,
but its correct administration poses a number of issues.
The service provider faces the problem of determining how
many instances or virtual machines to buy from the cloud
provider, a decision that has a direct impact on the user QoS
experience, on the SLA fulfilment, and on the provider’s
operational costs. Further, the resource requirements highly
depend on the usage profile and the hardware on which the
application is deployed, factors not necessarily under the
control of the service provider. To cope with this complex
scenario, service providers can rely on predictive models to
determine the resources necessary to offer a predefined QoS.

Typically, SLAs are specified as a percentile, such that
certain portion of the requests must be satisfied without

surpassing a certain value for a QoS measure, e.g. 95% of
the requests must be completed in at most 10 ms. Although
a number of performance models have been proposed to
assess the performance of software applications, these usu-
ally rely on methods that provide average values only, e.g.,
the average response time experienced by the requests. To
bridge the gap between average and percentile performance
measures, in this paper we investigate a fluid multi-class
queueing network (QN) model for the performance analysis
of software applications. The advantage of the fluid QN
model lies on its ability to approximate the cumulative distri-
bution function (CDF) of the performance measures, which
contains the percentile information necessary to evaluate
whether an SLA is met or not. Furthermore, we have devised
an automatic transformation to obtain the fluid QN model
from a Palladio Component Model (PCM) [1] instance.
PCM is a component-based software engineering tool that
allows the description of the application architecture, its
usage, and the characteristics of the hardware on which it is
deployed. As a result, it is possible to obtain the performance
prediction for the application directly from the PCM descrip-
tion, without any additional specification. Recent extensions
[2], [3] to the PCM enable it to model and assess the
cost and performance of cloud applications. In particular,
[3] extends PCM to handle time-varying conditions typical
of cloud deployments, while [2] extends PCM to model
cloud infrastructures and availability requirements on cloud
applications.

PCM models can be specified with the Palladio Bench
tool, which already offers tools for performance prediction
by means of simulation and analytic models. Although
accurate and able to assess SLAs, simulation-based analysis
is highly time-consuming, limiting the analysis when a large
parameter space needs to be explored, such as when defining
the right deployment size. In terms of analytic models,
the PCM tool can map to the Layered Queueing Network
(LQN) paradigm [4], which has been proven successful
for the performance assessment of software applications.
The advantage of LQNs is that they extend traditional
QNs to handle a number of features relevant for software
applications, such as resource pooling, synchronous calls
between components, admission control, among others. This
is done by building a set of related QN models, each one



making up a layer of the whole LQN model. An LQN model
can be solved with the LQN solver (LQNS) [5], which
automatically computes a number of relevant performance
measures. LQNS however provides average measures only,
which cannot be directly used to assess percentile SLAs.
As mentioned above, our approach aims at computing the
performance measures CDF, enabling the direct assessment
of percentile SLAs. As its computation requirements are
similar to those of LQNS, our model becomes an scalable
alternative for SLA assessment, compared to more computa-
tionally intensive simulations. The fluid model we introduce,
though, relies on a single QN model. The results in this paper
show that, for applications that can be adequately described
with a single QN model, the fluid analysis proposed is well-
suited for the direct assessment of percentile SLAs. Future
work will aim at extending the current fluid model to capture
many of the features supported by the LQN framework.

We have implemented the modeling framework intro-
duced in this paper in a tool called LINE, publicly available
at www.doc.ic.ac.uk/∼gcasale/line/. The tool automatically
builds the performance model from a PCM instance, and
computes relevant performance measures for SLA assess-
ment. It is also important to highlight that the fluid model
presented here is readily able to handle systems with a large
number of users and servers. This ability arises from the
definition of the fluid model itself, where the number of users
and servers are represented as a continuous quantity. This
avoids the scalability problems associated with the state-
space explosion typical of Markov chain models.

After a review of related work in the next section, we
introduce the transformation from a PCM instance to the
QN model in Section III. The analysis of the fluid QN model
is presented in Section IV, and its results are illustrated in
Section V. Conclusions follow in Section VI.

II. RELATED WORK

The Palladio Component Model (PCM) [1] is a
component-based software engineering meta-model that has
been designed to explicitly handle QoS aspects of software
applications. This is achieved by allowing the parametric
characterization of the hardware on which the application
will be deployed, as well as a usage model specifying the
workload characteristics. Thanks to the component-based
design, these characteristics can be specified independently
of the application architecture, but are related through an
allocation model. PCM models are specified with the Palla-
dio Bench tool, which offers simulation-based performance
analysis via the built-in Simucom tool. Simulation analysis
is both accurate and well suited for SLA assessment, as
it estimates the histogram of relevant performance metrics.
However, simulation is highly time-consuming when ex-
ploring a large parameter space, as when specifying the
deployment characteristics at design time.

Palladio Bench also supports analytic models for perfor-
mance analysis by means of LQN models [4], [6], which
are an extension of queueing networks [7] that have been
shown to provide an adequate framework to model software
systems [8]. Palladio Bench automatically generates the
LQN model of a PCM instance using the PCM2LQN model
transformation [9], and the resulting model is solved with
the LQN Solver (LQNS) [5], a tool for solving LQN models
using approximate mean-value analysis [10] .

Other approaches rely on LQN models to compute aver-
age performance measures, but these are derived from differ-
ent application models. UML4SOA models are used in [11],
augmented with a MARTE [12] profile to specify timings
associated to the deployment, while the Component-Based
Modeling Language (CBML) is used in [13] to specify
the application architecture in terms of components. Other
methodologies for performance analysis of component-based
software systems [14], [15] rely on traditional QN models,
from which it is also possible to obtain average performance
metrics. A recent survey on the topic can be found on [16].

The closest approach to our performance model is prob-
ably the fluid model for LQNs based on stochastic process
algebras recently proposed in [17]. The results in [17] focus
on average performance metrics, and on the good accuracy
obtained with the fluid model. However, the translation
from the LQN to the PEPA model makes no use of the
scheduling policy defined for the processors or tasks. As the
processor’s scheduling policy has a significant impact on the
fulfilment of SLAs, our model considers processor-sharing
(PS) scheduling explicitly. The analysis of First-Come-First-
Served (FCFS) processors will be the topic of future work.

III. BACKGROUND

In this section we describe how a QN model can be
derived from a PCM instance. To derive the QN model
from the PCM instance, we proceed in two steps. The first
step consists of using the PCM2LQN transformation [9]
to translate the PCM application description into an LQN
model. The second step derives the QN model from the
LQN description. We therefore focus on the second step,
starting with a general definition of QNs and LQNs, and
then proceeding on how the elements of the latter can be
used to parameterize the former.

A. Class-switching queueing networks

Our modeling tool is a closed multi-class queueing net-
work (QN) with class switching [7], also known as a multi-
chain QN [7]. This type of network is composed of a set
of M stations and K job classes. There are a total of N
jobs (or users) circulating in the network, demanding service
from the servers in the stations depending on their class.
Each of the N jobs belongs initially to a given class. A
class-k job in station i demands an exponentially-distributed
service time with rate µi,k, a service that is provided by one



Table I
QN NOTATION

Parameter Definition
M Number of stations
K Number of classes
N Number of users
P Routing probability matrix

P(i,k),(j,l) Probability that a class-k job finishes at station i and
proceeds to station j as a class-l job

µi,k Service rate of class-k jobs at station i
mi Number of servers at station i
x(t) State of the fluid QN at time t
xi,k(t) Number of class-k jobs at station i at time t
xi(t) Total number of jobs in station i at time t
x̄ Fixed point of the ODE system

f(x, i, k, j, l) Transition rate of a class-k job finishing at station i
and proceeding to station j as a class-l job

Qi,k Average number of class-k jobs in station i
Xi,k Average throughput of class-k jobs in station i
Ui,k Utilization posed by class-k jobs in station i
Ri,k Mean response time of class-k jobs in station i
Wk Overall response time of class-k jobs

of the mi servers in the station. The value of mi can be a
positive integer, or +∞, denoting a pure delay station. After
completing its service in station i, the job switches to class
l and proceeds to station j with probability P(i,k),(j,l). Table
I summarizes the notation for our reference QN model.

B. Layered queueing networks

An LQN is composed of tasks, which represent the
servers, and are deployed on processors. Both tasks and
processors have a multiplicity attribute, that allow the speci-
fication of multi-threaded and multi-core architectures. They
also have a scheduling policy to define how the incoming
requests are served. A task exposes a set of services, called
entries, which can be called from other tasks. A simple
example is shown in Figure 1, where the Web Server task,
deployed on the Web Server Processor, exposes two entries:
Logout and Login. Each entry has a set of activities, which
are executed according to an activity execution graph. An
activity executes by posing a demand on the processor it
is deployed on, or by generating a call to an entry in a
different task. These two alternatives correspond to internal
and external actions in the PCM model, respectively. Apart
from activities executing sequentially, a node in the activity
graph can be a probabilistic OR, or a fork-join node. A
probabilistic OR has a number of outgoing vertices, each
with an associated label that defines the probability with
which the activities in that path are executed. A fork node
allows the parallel execution of the next activities, and the
join node is executed only after all the previous activities
have been completed. This is illustrated in Figure 1, where
the Login entry executes by first calling the Query entry in
the Database task, and then proceeds with a probabilistic
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Figure 1. LQN example

OR, executing either of two activities, with probabilities
0.9 and 0.1. The call to an entry can be synchronous or
asynchronous, depending on whether the caller processor is
blocked until the called entry finishes or not. The workload
is modelled by a reference task which exposes no entries,
but has a multiplicity equal to the number of users. A set of
activities, and their activity graph, is defined at the task level
to specify how the services exposed by other tasks are called
by the users. The Workload task in Figure 1 is the reference
task, and sequentially calls the two entries in the Web Server
task. While these are the basic components of an LQN, a
number of extensions have been added to the framework, as
surveyed in [4]. Currently, our model supports probabilistic
OR nodes, but not fork-and-join nodes. Offering support for
these and other features will be the topic of future work.

C. The transformation

We start by defining the population characteristics of the
queueing network, which are taken from the reference task
in the LQN. The multiplicity of this task is used as the total
number of N users issuing jobs that circulate in the network.
From the activity graph in the reference task we also define
the number of classes K. Currently we support two types of
activity graphs at this level: a single trunk, or a probabilistic
OR (branch). In the former, the network is assumed to have a
single class of users, while in the latter we assume there are
as many classes as branches in the probabilistic OR. Further,
as the reference task defines a mean think time for the users,
we translate this into a delay node for the queueing network
and set the mean think time as indicated in the task. The
example in Figure 1 shows a single class of users, as there
is a single trunk in the activity graph of the Workload task.

The next step is to follow the set of calls posed by the
users in the task activities of the reference task. Each of
these activities is a call to a service (entry) exposed by
another task. When calling an entry, its activities will be
executed according to its activity graph. At this (entry) level,
we support general activity graphs, where each activity can
itself call an entry in another task in a recursive fashion.
This process terminates eventually, and the user then enters



its think time. For instance, in Figure 1 the user first calls
the Login service, which itself calls the Query entry in the
Database task. After this, one of two activities is executed,
both posing a demand on the Web Server Processor. This
terminates the execution of the first activity on the Workload
task, so the second activity starts, which calls the Logout
entry in the Web Server task. After this call is executed, the
user enters a think time before submitting a new request.

This behavior is mapped into a QN model as follows.
Every time an external call is made (an activity calls the
execution of an entry in another processor) a new link is
created between the two processors for this job class, by
setting P(i,k),(j,k) = 1, where i is the index of the processor
where the caller activity is deployed, j is the index of the
processor where the called entry is deployed, and k is the
job class, as set in the reference task. Whenever an activity
poses an actual demand on the processor i it is deployed
on, the service rate µi,k is set equal to the inverse of the
mean service time, where k is the job class as defined in the
reference task. The multiplicity of the processor is taken as
the number of servers mi. Although in a PCM it is possible
to define the processor scheduling policy as either FCFS
or PS, we will assume that all the nodes, except the delay
node, follow a PS policy. The extension to FCFS is left
as future work. In the example in Figure 1, there are two
processing stations, one for the web server, and one for the
database. The user first goes to the database station, and then
to the web server station, completing the execution of the
first activity in the Workload activity graph. It then visits
the web server station once more to complete the second
activity. After this, the user visits the delay node, where it
spends a think time before submitting a new request.

After executing all its activities, the user starts its think
time. We model this by linking the last used processor with
the delay node, setting P(i,k),(delay,l) = pl, where i is the
index of the last processor visited by the request, k is its
class, and pl is the probability that this user becomes of class
l, as defined in the probabilistic OR in the reference task.
This is the first appearance of the class-switching feature
of the model, and allows us to mix all the requests in the
delay node, and modify their class when submitting a new
request. This describes well the PCM usage model, where
all the users share a think time, after which they generate a
new class-l request with probability pl.

IV. FLUID ANALYSIS

In this section we describe how to analyze the QN model,
obtained by transforming the LQN description of the PCM
instance, in order to compute its transient and steady-state
performance measures. A simple approach would be to treat
it as a product-form queueing network, for which there are
well-established methods, such as the linearizer algorithm
[10]. This is in fact how LQNS analyses each of the sub-
models corresponding to the layers in the LQN model. We

however take a different approach, by defining a fluid multi-
class QN with class switching. A class-switching QN, also
known as multi-chain QN [7], allows a user to change its
class after completing its service at a station. This feature
is key in modeling the PCM instance, as described at the
end of the last section and in Section IV-D below. The
fluid model allows us to compute both transient and steady-
state performance measures, and it also let us compute the
response time distribution, and not just its expected value,
which can be effectively used to assess the fulfilment of
percentile SLAs. Finally, the fluid model allows extensions
that cannot be directly analyzed by means of standard meth-
ods for product-form queueing networks, and which will be
the focus of future work. The notation to be introduced is
summarized in Table I.

A. The class-switching PS fluid model

In our context, a fluid model is a continuous-time dy-
namical system described by a set of ordinary differen-
tial equations (ODE) that approximates the evolution of a
stochastic system with a Markovian description. In our case,
the stochastic system is a closed class-switching queueing
network, the state of which at time t is given by the vector
x(t) = {xi,k(t), 1 ≤ i ≤ M, 1 ≤ k ≤ K}, where xi,k(t)
is the number of class-k jobs in station i at time t. From
now on the double index (i, k) for any vector refers to its
entry (i− 1)K + k, that is, the one corresponding to station
i and class-k jobs. The system state is modified by events,
which in our closed queueing network are limited to service
completions. Once the service of a class-k job terminates
in station i, the job proceeds to station j as a class-l job
with probability P(i,k),(j,l). This means that the state changes
from state x to state x+ej,l−ei,k, where ei,k is a vector of
zeros with a one in entry (i, k). This transition occurs with a
rate proportional to µi,k, as it is a class-k service completion
in station i. Further, as we assume that the stations follow a
PS policy, the service rate is equally divided between all the
jobs present at the station, that is among xi =

∑K
l=1 xi,l. If

we assume a single server, the transition rate f(x, i, k, j, l)
from state x to state x+ ej,l − ei,k is given by

f(x, i, k, j, l) = µi,kP(i,k),(j,l)
xi,k
xi

1 {xi > 0} ,

where 1{} is the indicator function. This expression poses
some numerical issues due to the discontinuity at xi,k = 0

when
∑K

l=1,l 6=k xi,l = 0, so we modify it as

f(x, i, k, j, l) =


µi,kP(i,k),(j,l)

xi,k

xi
, xi > 1,

µi,kP(i,k),(j,l)xi,k, 0 < xi ≤ 1,

0, xi ≤ 0.

This expression eliminates the (first-order) discontinuities,
as the first and second expressions coincide when xi = 1,
while the second and third coincide when xi = 0.



Although product-form QNs accept single PS processors
only, the previous expression for the transition rates can be
generalized for the multi-server case. We assume that a new
job is always assigned to an idle server if any, while the mi

servers are fully shared when all of them are busy, such that
the transition rates become

f(x, i, k, j, l) =


µi,kP(i,k),(j,l)

xi,k

xi
mi, xi > mi,

µi,kP(i,k),(j,l)xi,k, 0 < xi ≤ mi,

0, xi ≤ 0.

For the delay stations, the number of servers is set equal
to N =

∑M
i=1

∑K
k=1 xi,k, such that the first expression is

never activated, and the transition rates are simply equal
to µi,kP(i,k),(j,l)xi,k. Therefore, this rate function considers
both PS and delay stations. A more compact representation
of the previous expression is

f(x, i, k, j, l) = µi,kP(i,k),(j,l)
xi,k
xi

min {mi, xi} . (1)

Since a transition with rate f(x, i, k, j, l) causes the state
to jump from x to x − ei,k + ej,k, the set of ODEs that
approximate the queueing network evaluated at a point x is

dx

dt
=

M∑
i=1

M∑
j=1

K∑
k=1

K∑
l=1

f(x, i, k, j, l)(ej,l − ei,k).

Since the rate functions f are Lipschitz continuous [18], the
system of ODEs has a unique solution x(t).

We use x(t) to approximate the actual behavior of the QN
described by XN (t) = {XN

i,k(t), 1 ≤ i ≤M, 1 ≤ k ≤ K},
where XN

i,k(t) is the number of class-k jobs in station i at
time t in a QN with a population of N jobs. Starting with
[19], it has been recognized that, under certain conditions,
the evolution of a stochastic system with a finite population
N can be approximated by a system of ODEs. Further,
this approximation becomes exact when the population N
approaches∞. For closed QNs with PS stations, it has been
recently shown [20] that this result holds.

B. Steady-state performance measures

Let x̄ be a fixed point of the ODE system, found by letting
the system evolve until the derivative becomes negligible.
Let Qi,k, Xi,k, and Ri,k be the mean number, throughput,
and response time of class-k jobs in station i, for 1 ≤ i ≤M
and 1 ≤ k ≤ K. Also, let Xk be the throughput of class-k
jobs with respect to a specific node. This is a delay node,
labeled D, and represents the users think time between the
completion of a request and the issue of the next one. We
assume all classes visit node D, where they experience an
exponential delay with mean RD,k, for 1 ≤ k ≤ K. We
assume the matrix P = [[P(i,k),(j,l)]

K
k,l=1]Mi,j=1 can be de-

composed into nC chains or strongly connected components.
These chains divide the K classes into nC disjoint sets
{Cq, 1 ≤ q ≤ nC}, such that jobs can switch among classes
in the same chain only.

From the definition of the state vector x(t), and its fixed
point x̄, the mean number of jobs per class and station is
readily available as Qi,k = x̄i,k, for 1 ≤ i ≤ M and 1 ≤
k ≤ K. Then, for each class we determine the throughput
at node D by Little’s law

XD,k =
QD,k

RD,k
, 1 ≤ k ≤ K,

since the mean response time RD,k is equal to the mean
delay time at node D. Now, for each chain q we determine
its throughput at station D by summing up the throughput
of all the classes that belong to this chain, that is

X̃D,q =
∑
k∈Cq

XD,k, 1 ≤ q ≤ nC .

To determine the throughput for each chain in the remain-
ing stations we must first compute the average number of
visits to each station per visit to station D. To this end we
compute the invariant measure γ of matrix P , for which a
multi-chain analysis is necessary. That is, first the nC chains
are identified, and then for each chain an invariant measure
is obtained. The average number of visits to station i per
visit to station D for jobs in chain q is then given by

L̃q
i,D =

∑
k∈Cq

γi,k∑
k∈Cq

γD,k
, 1 ≤ q ≤ nC ,

that is, we count visits from all the job classes belonging to
chain q. The throughput of chain q at station i is therefore

X̃i,q = L̃i,DXD,k, 1 ≤ q ≤ nC .

To compute the throughput for each job class, we first
determine the proportion of visits to station i by jobs in
chain q that corresponds to class-k jobs, referred to as αi,k.
This proportion is obtained from the invariant measure γ as

αi,k =
γi,k∑

k∈Cq
γi,k

, 1 ≤ i ≤M, 1 ≤ q ≤ nC .

The throughput of class-k jobs at station i is then given by
Xi,k = X̃i,qαi,k, for 1 ≤ i ≤M and k ∈ Cq, 1 ≤ q ≤ nC .
The response times are obtained by Little’s law as

Ri,k =
Qi,k

Xi,k
, 1 ≤ k ≤ K, 1 ≤ i ≤M,

and the utilization at station i is given by

Ui =

K∑
k=1

Xi,k

µi,k
, 1 ≤ i ≤M. (2)

1) Response time distribution: Up to this point, we have
focused on mean performance measures, which can also be
computed with traditional methods. The fluid model is also
able to provide the probability distribution of these measures,
which can be used to assess the fulfilment of SLAs. Here
we illustrate how to compute the total response time for
class-k jobs, including the visits to all stations between two



successive visits to the delay node. In traditional QNs, the
class-k average response time is obtained by considering
the QN with one class-k job less, but this analysis cannot
be performed here due to the fractional nature of the fluid
model. Our approach however is similar in that we remove
a small amount ε from the class-k fluid and assign it to a
new class, which behaves almost identically to class-k.

Specifically, we consider the QN in steady-state, that is,
we take the fixed point x̄ as the initial state for the QN.
Next, we modify the QN by adding a new job class K +
1. The mean service times and routing matrix of this class
are set equal to those of class k, with the difference that
after reaching the delay node, no fluid is allowed to exit,
that is P(D,K+1),(D,K+1) = 1. Now, let Sk be the set of
stations visited by class-k jobs immediately after leaving
the delay node, and let qi be the associated probability of
this transition. From the fixed point x̄, we take a portion ε of
the class-k fluid in the delay node, and assign it to the class
K + 1 fluid, splitting it among the stations in Sk according
to the probabilities pi. In other words, we first modify the
vector x̄ to account for the extra class, adding zeros to the
entries corresponding to the new class. We then build a new
vector x̃ as x̃ = x̄+ δ, where the non-zero entries of δ are

δD,k = −εx̄D,k, and δi,K+1 = εx̄D,kqi,

for i ∈ Sk. We now solve the modified system of ODEs
in Eq. (1) with the additional class, and with initial vector
x̃, and let it evolve until xD,K+1, the class-K + 1 fluid in
the delay node, reaches ε. The response time distribution is
approximated by the path xD,K+1(t)/ε, i.e., if Wk denotes
the random variable of the response time for class-k jobs,

P (Wk ≤ t) ≈
xD,K+1(t)

ε
, t ≥ 0.

C. Transient performance measures

Computing the transient performance measures is similar
to obtaining the steady-state ones. Solving the ODE, the
whole history of x(t) is available, from t = 0 to any time
t = T , such that the expected queue-length at a time t is

Qi,k(t) = xi,k(t), 1 ≤ i ≤M, 1 ≤ k ≤ K.

To compute the expected throughput of class-k jobs in
station i, Xi,k(t), we obtain the effective rate at which jobs
are being processed given the current queue-lengths, as

Xi,k(t) =

M∑
j=1

K∑
l=1

f(x(t), i, j, k, l)

P(i,k),(j,l)
,

for 1 ≤ i ≤ M, 1 ≤ k ≤ K. From this we can obtain the
expected utilization at time t by means of Eq. (2), replacing
Xi,k by its transient version Xi,k(t).
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Figure 2. Media store application

D. Artificial classes

As described in Section III, when building the QN model
from the LQN description of a PCM instance, the class of
a job is defined by the branch, if any, in the reference task.
However, to fulfil its service, the job may need to visit
a certain processor i several times, each with a different
service time. An initial option to handle this behavior is
to average the service times at each visit. As the node
visited after node i may be different in each visit, the
exit probabilities need to be averaged as well. To avoid
losing routing and service time information by averaging,
we consider a different alternative where a second visit to
node i is represented by making the class-k job switch to a
new class k′, which inherits the subsequent path and service
times from class k. When the class-k′ job visits a node for a
second time, the process is repeated, creating a new class and
forcing the class-k′ job to switch to this new class. In this
manner, for each original class k, a set of artificial classes
K(k) is created.

Using the disjunct class sets K(k), we obtain a network
description with a larger set of classes K̂ = ∪Kk=1K(k). To
compute the performance metrics for the original classes,
we simply add the mean numbers and throughputs for the
corresponding artificial classes, as

Qi,k =
∑

l∈K(k)

Q̂i,l, Xi,k =
∑

l∈K(k)

X̂i,l,

for 1 ≤ i ≤ M, 1 ≤ k ≤ K, where Q̂i,l and X̂i,l are the
metrics obtained for the queueing network with the artificial
classes. From these we can compute the mean response times
and utilizations for the original network as in the previous
section. Notice that a larger number of classes means a larger
number of ODEs, which implies longer computation times
to obtain the performance measures.

V. RESULTS

In this section we illustrate the behavior of the fluid
performance model, and compare its results against LQNS.
We make use of the Media Store application [1], the
architecture of which is depicted in Figure 2, and whose
components include a web GUI, a store manager compo-
nent, a watermaking component, and a mySQL database.
The database is deployed on a database server, while the
other components are deployed on the application server.
These components, their interaction, and the deployment
characteristics are specified in a PCM [1]. The key resources
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Figure 3. Server utilization for the Media Store application

for the deployment are the CPU of the servers, and the disk
(HDD) of the DB server. There is a closed population of N
users, whose requests can be to download or upload files.
For the experiments presented here, we have eliminated a
connection pool associated to the database, as this imposes
a finite capacity region in the QN that the current version
of the fluid model cannot handle. For the same reason,
we also set the scheduling policy of all the processors to
PS. The model was implemented and solved in MATLAB
2012b, making use of its ODE solvers. The experiments
reported here were obtained on a 3.4 GHz 4-core Intel Core
i7 machine, with 4GB RAM, running Linux Ubuntu release
12.04. With this configuration, solving the fluid model and
obtaining all the performance measures takes less than a
second, times similar to those of LQNS.

1) Average performance: Figure 3 presents the predicted
server utilization for population sizes between 10 and 110
users. Clearly, the application server CPU and the DB server
HDD have a larger utilization than the DB server CPU, and
all these are rather small for the case with 10 users. Increas-
ing the number of users increases the utilization, but with
70 users the DB server HDD reaches its maximum capacity,
and becomes the system bottleneck. As shown in Figure 4(a),
increasing the user population up to 70 users increases the
throughput, but beyond this point the throughput does not
increase, as the system is limited by the DB server HDD.
The QoS degradation when the user population reaches 70
users or more is captured in Figure 4(b), where the mean
response time for both download and upload services shows
a sharp increase. In a cloud deployment, this implies that
more resources are needed, and a rising trend reaching the
70 users limit should trigger the start-up of a new instance
of the DB server to prevent the QoS degradation. Such a
trend could be spotted in the monitoring data, triggering the
corresponding scale-up action.

2) Comparison with LQNS: In Figures 3-4 we present
the results for both the fluid model and LQNS, showing
a very good agreement between both. The only significant
difference occurs in the response times for 30 and 50
users. This difference is caused by the approximation in
the processing rate introduced in the fluid model. Since
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Figure 4. Performance of Download (D) and Upload (U) services

the approximation is introduced when the number of jobs
in process is less than one, as the load increases and this
threshold is crossed the response time predictions of the fluid
model and LQNS become very similar.

3) Meeting SLAs: Figure 5(a) depicts the response time
CDF for the download service provided by the Media Store
application. This case corresponds to a population of 70
users, and we show two cases. In the first case, there is
a single server for the DB processor (m = 1). Comparing
with Figure 4(b), we observe that the expected response time
for this configuration is around 2 seconds, but from the CDF
we learn that for 95% of the requests we can only guarantee
that their response time will be under 5 seconds. This
configuration violates a hypothetical SLA where 95% of the
download requests must complete in less than one second.
We therefore opt for adding a new processor (m = 2),
and under this configuration we expect 95% of the requests
to be completed in less than 600 ms, complying with the
SLA. This simple example illustrates how a decision about
SLAs can be answered with the performance metric CDF,
as computed with the proposed fluid model.

4) Transient results: Figures 5(b) and 5(c) illustrate how
the utilization and the throughput behave as a function
of time. Clearly, both measures variate significantly before
settling on their steady-state value, an effect that pure steady-
state analysis cannot capture. In a cloud deployment, these
transient effects gain significant importance, as the number
of resources may vary with the workload, and the actual
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Figure 5. Response time distribution and transient measures

resource capacity can be affected by multi-tenancy.

VI. CONCLUSION AND FUTURE WORK

The results presented in the previous section confirm the
potential of the fluid model to evaluate both the transient
and the steady-state performance of cloud component-based
applications. Moreover, the model provides the CDF of
relevant performance metrics, such as the response time,
from which it is possible to assess the fulfilment of SLAs.

We have implemented the proposed modeling framework
in a tool called LINE, publicly available at www.doc.ic.ac.
uk/∼gcasale/line/, which automatically builds and solves the
fluid performance model from a PCM instance. We also plan
to extend the fluid model to consider, for instance, more
general service-time distributions.
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[18] J. F. Pérez and G. Casale, “A fluid model for closed queueing
networks with PS stations,” Imperial College London, Tech.
Rep. DTR13-8, 2013.

[19] T. G. Kurtz, “Solutions of ordinary differential equations as
limits of pure jump Markov processes,” J. Appl. Probab.,
vol. 7, pp. 49–58, 1970.

[20] J. Anselmi, B. D’Auria, and N. Walton, “Closed queueing
networks under congestion: non-bottleneck independence and
bottleneck convergence,” Math.Oper. Res., vol. 38, pp. 469–
491, 2013.


