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ABSTRACT
We study a supply chain consisting of a single man-
ufacturer and two retailers. The manufacturer pro-
duces goods on a make-to-order basis, while both re-
tailers maintain an inventory and use a periodic re-
plenishment rule. As opposed to the traditional (r, S)
policy, where a retailer at the end of each period or-
ders the demand seen during the previous period, we
assume that the retailers dampen their demand vari-
ability by smoothing the order size. More specifically,
the order placed at the end of a period is equal to β
times the demand seen during the last period plus
(1 − β) times the previous order size, with β ∈ (0, 1]
the smoothing parameter.

We develop a GI/M/1-type Markov chain with only
two nonzero blocks A0 and Ad to analyze this sup-
ply chain. The dimension of these blocks prohibits
us from computing its rate matrix R in order to ob-
tain the steady state probabilities. Instead we rely on
fast numerical methods that exploit the structure of
the matrices A0 and Ad, i.e., the power method, the
Gauss-Seidel iteration and GMRES, to approximate
the steady state probabilities.

Finally, we provide various numerical examples that
indicate that the smoothing parameters can be set
in such a manner that all the involved parties bene-
fit from smoothing. We consider both homogeneous
and heterogeneous settings for the smoothing param-
eters.

1. INTRODUCTION
Consider a two-echelon supply chain consisting of

a single retailer and a single manufacturer, where the
retailer places an order for a batch of items with
the manufacturer at regular time instants, i.e., the
time between two orders is fixed and denoted as r.
The manufacturer may be regarded as a single server
queue that produces these items and delivers them to
the retailer as soon as a complete order is finished.
The retailer sells these items and maintains an in-
ventory on hand to meet customer demands. When
the customer demand exceeds the current inventory
on hand, only part of the demand is immediately ful-
filled and the remaining items are delivered as soon
as new items become available at the retailer. Hence,

items are backlogged instead of being lost (i.e., there
are no lost sales). We assume that the manufacturer
does not maintain an inventory, but simply produces
items whenever an order arrives, i.e., it operates on a
make-to-order basis.

A key performance measure in such a system is the
fill-rate, which is a measure for the proportion of cus-
tomer demands that can be met without any delay.
In order to guarantee a certain fill-rate it is impor-
tant to determine the size of the orders placed at the
regular time instants. This size will depend on the
current inventory position, defined as the inventory
on hand plus the number of items on order minus
the number of backlogged items. The rule that de-
termines the order size is termed the replenishment

rule. A well-studied replenishment rule exists in or-
dering an amount such that the inventory position is
raised after each order to some fixed position S, called
the base-stock level. This basically means that at the
regular time instants, you simply order the amount of
items sold since the last order instant. As a result, the
order policy of the retailer is called an (r, S) policy.

A common approach in the analysis of such a pol-
icy is to assume an exogenous lead time, which means
that the time required to deliver an order is indepen-
dent of the size of the current order and independent
of the lead time of previous orders. In [4] the (R, S)
policy was studied with endogenous lead times, mean-
ing the lead times depend on the order size and con-
secutive lead times are correlated. The results in [4]
indicate that exogenous lead times result in a severe
underestimation of the required inventory on hand,
as expected.

When the lead times are endogenous, it is clear that
a high variability in the order sizes comes at a cost,
as this increases the variability of the arrival process
at the manufacturer and therefore increases the lead
times. As a result, replenishment rules that smooth
the order pattern at the retailer were studied in [3]
and it was shown that the retailer can reduce the up-
stream demand variability without having to increase
his safety stock (much) to maintain customer service
at the same target level. Moreover, on many occa-
sions the retailer can even decrease his safety stock
somewhat when he smooths his orders. This is clearly
advantageous for both the retailer and the manufac-



turer. The manufacturer receives a less variable order
pattern and the retailer can decrease his safety stock
while maintaining the same fill rate, so that a coop-
erative surplus is realized.

In this paper we analyze the same set of replenish-
ment rules as in [3], but now we look at a two-echelon
supply chain consisting of one manufacturer and two
retailers, where either both, one or neither of the
retailers uses a smoothing rule. The main question
that we wish to address therefore exists in studying
whether all parties can still benefit when the orders
are smoothed and moreover who benefits most.

As in [3], one of the key steps in the analysis of
this supply chain system will exist in setting up a
GI/M/1-type Markov chain [7], that has only two
non-zero blocks, denoted as A0 and Ad. However,
as opposed to [3], the size of these blocks often pro-
hibits us from storing them into our main (or sec-
ondary) memory. This implies that iteratively com-
puting the dense R matrix, used to express the ma-
trix geometric steady state vector of the GI/M/1-type
Markov chain, by one of the existing methods such as
the functional iteration or cyclic reduction [1], is no
longer possible/efficient. Instead, we will rely on the
specific structure of the matrices A0 and Ad and will
make use of numerical methods typically used to solve
large finite Markov chains, such as the shuffling algo-
rithm [5], Kronecker products, the power method, the
Gauss-Seidel iteration and GMRES [9].

2. MODEL DESCRIPTION
We consider a two-echelon supply chain with two

retailers and a single manufacturer, where both retail-
ers maintain their own inventory. Every period, both
retailers observe their customer demand. If there is
enough on-hand inventory available at a retailer, the
demand is immediately satisfied. If not, the shortage
is backlogged. To maintain an appropriate amount of
inventory on hand, both retailers place a replenish-
ment order with the manufacturer at the end of every
period. The manufacturer does not hold a finished
goods inventory but produces the orders on a make-
to-order basis. The manufacturers production sys-
tem is characterized by a single server queueing model
that sequentially processes the orders, which require
stochastic processing times. Once the complete re-
plenishment order of both retailers is produced, the
manufacturer replenishes both inventories. Hence,
the order in which the two orders are produced is
irrelevant, as shipping only occurs when both orders
are ready.

The time from the moment an order is placed to
the moment that it replenishes the retailers inven-
tory, is the replenishment lead time Tr. The queueing
process at the manufacturer clearly implies that the
retailers replenishment lead times are stochastic and
correlated with the order quantity. The sequence of
events in a period is as follows. The retailer first re-
ceives goods from the manufacturer, then he observes
and satisfies customer demand and finally, he places
a replenishment order with the manufacturer. The
following additional assumptions are made:

1. Customer demand during a period for retailer
i is independently and identically distributed
(i.i.d.) over time according to an arbitrary,

finite, discrete distribution D(i) with a maxi-

mum of m
(i)
D , for i = 1 and 2. The demand

at the retailers is also assumed to be indepen-
dent of each other. For further use, denote

mD = m
(1)
D + m

(2)
D .

2. The order quantity O
(i)
t of retailer i during pe-

riod t is determined by the retailers replenish-
ment rule and influences the variability in the
orders placed on the manufacturer. Possible re-
plenishment rules are discussed in the next sec-
tion.

3. The replenishment orders are processed by a sin-
gle FIFO server. This excludes the possibility of
order crossovers. When the server is busy, new
orders join a queue of unprocessed orders.

4. The orders placed during period t are delivered
when both orders have been produced.

5. Orders consist of multiple items and the pro-
duction time of a single item is i.i.d. according
to a discrete-time phase type (PH) distribution
with representation (α, U). For further use, we
define u∗ = e − Ue, with e a column vector of
ones.

The PH distribution is determined using the match-
ing procedure presented in [3], that matches the first
two moments of the production time using an order 2
representation, even if the squared coefficient of vari-
ation is small by exploiting the scaling factor as in [2].
This implies that the length of a time slot is chosen
as half of the mean production time of an item. In
other words, the mean production time of an item is
two time slots, while the length of a period is denoted
as d time slots, where d is assumed to be an integer.

The time from the moment the order arrives at the
production queue to the point that the production of
the entire batch is finished, is the production lead time
or response time, denoted by Tp. Note that the pro-
duction lead time is not necessarily an integer number
of periods. Since in our inventory model events occur
on a discrete time basis with a time unit equal to one
period, the replenishment lead time Tr is expressed in
terms of an integer number of periods. For instance,
suppose that the retailer places an order at the end

of period t, and it turns out that the production lead
time is 1.4 periods. This order quantity will be added
to the inventory in period t + 2, and due to our se-
quence of events, can be used to satisfy demand in
period t + 2. As such, we state that the replenish-
ment lead time Tr is ⌊Tp⌋ periods, i.e., 1 period in
our example.

3. REPLENISHMENT RULES
The retailers considered in this paper apply an

(r, S) policy with or without smoothing, meaning
amongst others they place an order at the end of



each period. Without smoothing, the order size is
such that the inventory position IP , defined as the
on-hand inventory plus the number of items on order
minus the backlogged items, equals some fixed S af-
ter the order is placed. In other words, the size of
the order Ot at the end of period t simply equals the
demand Dt observed during period t.

If smoothing is applied with parameter 0 < β < 1,
we do not order the difference between S and IP , but
instead only order β times S − IP . As will become
clear below, this does not imply that fewer items are
ordered in the long run, it simply means that some
items will be ordered at a later time. As shown in [3],
this rule is equivalent to stating that the size of the
order at the end of period t, denoted Ot, is given by

Ot = (1 − β)Ot−1 + βDt,

where Dt is the demand observed by a retailer in pe-
riod t. Hence, setting β = 1 implies that we do not
smooth. This equation also shows that the mean or-
der size is still equal to the mean demand size E[D].
It is also easy to show [3] that the variance of the
order size V ar[O] equals

β

(2 − β)
V ar[D],

meaning the variance decreases to zero as β ap-
proaches zero, where V ar[D] is the variance in the
demand. It is also possible to consider β values be-
tween 1 and 2, but this would amplify the variability
instead of dampening it.

The key question that our analytical model will an-
swer is how to select the base-stock level S such that
the fill-rate, a measure for the proportion of demands
that can be immediately delivered from the inventory
on hand, defined as

1 −
expected number of backlogged items

expected demand
,

is sufficiently high. The level S is typically expressed
using the safety stock SS, defined as the average net
stock just before a replenishment arrives (where the
net stock equals the inventory on hand minus the
number of backlogged items). For a retailer that
smooths with parameter β, S and SS are related as
follows [3]

S = SS + (Tr + 1)E[D] +
1 − β

β
E[D],

where Tr is the mean replenishment lead time. Thus,
a good policy will result in a smaller safety stock SS,
which implies a lower average storage cost for the re-
tailer.

4. THE MARKOV CHAIN
Both Markov chains developed in this section are a

generalization of the Markov chain introduced in [3],
for the system with a single retailer. The numerical
method to attain their stationary probability vector,
discussed in Section 5, is however very different.

From now on we will express all our variables in
time slots, where the length of a single slot equals half

of the mean production time, i.e., α(I−U)−1e/2, and
orders are placed by both retailers every d time slots.
Hence, the order size of retailer i at the end of period

t is now written as O
(i)
td and

O
(i)
td = (1 − βi)O

(i)

(t−1)d + βiD
(i),

where βi is the smoothing parameter of retailer i, for
i = 1, 2. As the order size must be an integer, the

integer amount ordered O
(i∗)
td will equal ⌈O

(i)
td ⌉ with

probability O
(i)
td − ⌊O

(i)
td ⌋ and ⌊O

(i)
td ⌋ with probabil-

ity ⌈O
(i)
td ⌉ − O

(i)
td in case O

(i)
td is not an integer. This

guarantees that E[O
(i∗)
td ] = E[O

(i)
td ] = E[D(i)].

The joint order O∗
td of both retailers placed at time

td equals O
(1∗)
td + O

(2∗)
td . Recall, both these orders are

only delivered by the manufacturer when the joint
order has been produced. Next, define the following
random variables:

• tn: the time of the n-th observation point, which
we define as the n-th time slot during which the
server is busy,

• a(n): the arrival time of the joint order in ser-
vice at time tn,

• Bn: the age of the joint order in service at time
tn, expressed in time slots, i.e., Bn = tn − a(n),

• Cn: the number of items part of the joint order
in service that still need to start or complete
service at time tn,

• Sn: the service phase at time tn.

All events, such as arrivals, transfers from the wait-
ing line to the server, and service completions are
assumed to occur at instants immediately after the
discrete time epochs. This implies that the age of an
order in service at some time epoch tn is at least 1.
We start by introducing the Markov chain for the case
where both retailers smooth.

4.1 Both retailers smooth
It is clear that the stochastic process

(Bn, Cn, O
(1)

a(n), O
(2)

a(n), Sn)n≥0 forms a discrete time

Markov process on the state space N0×{(c, x1, x2)|c ∈

{1, . . . , mD}, 1 ≤ xi ≤ m
(i)
D , i ∈ {1, 2}} × {1, 2}, as

the PH service requires only two phases. Note
that the process makes use of the order quantities

O
(i)

a(n) instead of the integer values O
(i∗)

a(n). Since this

order quantity is a real number, the Markov process

(Bn, Cn, O
(1)

a(n), O
(2)

a(n), Sn)n≥0 has a continuous state

space which makes it very hard to find its steady
state vector.

Therefore, instead of keeping track of O
(i)

a(n) in an

exact manner, we will round it in a probabilistic way
to the nearest multiple of 1/g, where g ≥ 1 is an inte-
ger termed the granularity of the system. Clearly, the
larger g, the better the approximation. Hence, we ap-
proximate the Markov process above by the Markov

chain (Bn, Cn, O
g,(1)

a(n) , O
g,(2)

a(n) , Sn)n≥0 on the discrete



state space N0 × {(c, x1, x2)|c ∈ {1, . . . , mD}, xi ∈

S
(i)
g , i ∈ {1, 2}} × {1, 2}, where S

(i)
g = {1, 1 + 1/g, 1 +

2/g, . . . , m
(i)
D } and the quantity O

g,(i)
td evolves as fol-

lows. Let

x = (1 − βi)O
g,(i)

(t−1)d + βiD
(i),

then O
g,(i)
td = x if x ∈ S

(i), otherwise it equals ⌈x⌉g

with probability g(x − ⌊x⌋g), or ⌊x⌋g with probabil-
ity g(⌈x⌉g − x), where ⌈x⌉g (⌊x⌋g) rounds up (down)

to the nearest element in S
(i)
g . Notice, by induction,

we have E[O
g,(i)
td ] = E[D(i)]. Using this probabilis-

tic rounding, we can easily compute the conditional

probabilities P [O
g,(i)
td = q′|O

g,(i)

(t−1)d = q], which we de-

note as p
(i)
g (q, q′), from D(i).

The transition matrix Pg of the Markov chain

(Bn, Cn, O
(1)

a(n), O
(2)

a(n), Sn)n≥0 is a GI/M/1-type

Markov chain [7] with the following structure

Pg =

















Ad A0

...
. . .

Ad A0

Ad A0

. . .
. . .

















,

as Bn either increases by one if the same joint order
remains in service, or decreases by d if a joint order is
completed. The size m of the square matrices A0 and

Ad is 2mDmg, with mg =
∏2

i=1(m
(i)
D g− g +1), which

is typically such that we cannot store the matrices A0

and Ad in memory. Although we can eliminate close
to 50% of the states by removing the transient states

with Cn > ⌈O
(1)

a(n)⌉ + ⌈O
(2)

a(n)⌉, the size m remains

problematic and this would slow down the numerical
solution method presented in Section 5.

4.2 One retailer smooths
Assume without loss of generality that retailer one

smooths, while retailer two does not, i.e., β1 < 1 and
β2 = 1. In this case we can also rely on the Markov
chain defined above, but now there is no longer a need

to keep track of O
g,(2)

a(n) , as the orders of retailer two are

distributed according to D(2). This not only simpli-
fies the transition probabilities, but also considerably
reduces the time and memory requirements of the nu-
merical solution method introduced in Section 5. Al-
though storing the matrices A0 and Ad in memory
may no longer be problematic, a numerical approach
as presented in the next section still outperforms the
more traditional approach that relies on computing
the rate matrix R [7].

5. NUMERICAL SOLUTION
The objective of this section is to introduce a nu-

merical method to compute the steady state distribu-
tion of the Markov chain introduced in Section 4.1 by
avoiding the need to store the matrices A0 and Ad.

5.1 Fast multiplication

In order to multiply the vector x = (x0, x1, . . .) with
Pg, where xi is a length m vector, without storing
the matrices A0 or Ad, we will write Pg as the sum of

P
(0)
g + P

(d)
g =













A0

. . .

A0

. . .













+













Ad

...
Ad

. . .













,

and compute xPg as xP
(0)
g + xP

(d)
g . To express the

time complexity of these multiplications, assume xi =
0 for i ≥ n for some n (as will be the case in the next
subsection).

The matrix A0 corresponds to the case where the
same joint order remains in service, meaning Cn ei-
ther remains the same or decreases by one. Due to
the order of the random variables, the matrix A0 is
a bi-diagonal block Toeplitz matrix, with blocks of
size 2mg. The block appearing on the main diagonal
equals I ⊗U , as the production of the same item con-
tinues in this case. The block below the main diagonal
is I⊗u∗α, as the item is finished, but at least one item
of the joint order needs to be produced. Hence, as the
PH representation is of order 2 (even in case of low

variability), we can multiply x with P
(0)
g in O(mn)

time.
When multiplying with Ad, we first note that only

its first 2mg rows are non-zero, as Cn must equal one
and a service completion must occur. Hence, each
of the vectors xi is reduced to a length mg vector
in O(nmg) time. These vectors must be multiplied
with W1⊗W2, where the (q, q′)-th entry of Wi equals

p
(i)
g (q, q′) = P [O

g,(i)
td = q′|O

g,(i)

(t−1)d = q], for i = 1, 2.

The multiplication with W1⊗W2 is done in two steps.
First we multiply with (I⊗W2), which can be trivially

done in O((m
(2)
D g)2m

(1)
D g) = O(mgm

(2)
D g)) for each

vector, followed by the multiplication with (W1 ⊗ I).
This latter multiplication can be rewritten as a multi-
plication with (I⊗W1) using the shuffle algorithm[5].

Hence, it can also be done in O(mgm
(1)
D g).

Performing the multiplication with W1 ⊗ W2 cor-
responds to determining the new order sizes for each
retailer. To complete the transition we need to deter-
mine the joint order size and the initial service phase
of the first item part of the joint order. The first
corresponds to distributing the outcome of the above-
mentioned multiplications in the proper entries, while
the service phase is found using α. In conclusion, the

time required to multiply x with P
(d)
g can be writ-

ten as O(nmg(m
(1)
D + m

(2)
D )g) = O(nmg) and the

time needed to multiply x with Pg is therefore also
O(nmg). In practice, for g small, the multiplication

with P
(0)
g is more time demanding than the multipli-

cation with P
(d)
g and a considerable percentage of the

time is also spend on allocating memory.

5.2 The power method, the Gauss-Seidel
iteration and GMRES



To determine the steady state probability vector of
the transition matrix Pg we rely on the fast matrix
multiplication between a vector x and Pg introduced
above.

When combined with the power method, we ba-
sically start with some initial vector x(0) and de-
fine x(k + 1) = x(k)Pg until the infinity norm of
x(k + 1) − x(k) is smaller than some predefined ǫ1
(e.g., ǫ1 = 10−8). If we start from an empty system,
x(0) has only one nonzero component x0(0) of length
m and x(k) has k + 1 nonzero components x0(k) to
xk(k). Whenever some of the last components are
smaller than some predefined ǫ2, we reduce the length
of x(k) (by adding these components to the last com-
ponent larger than ǫ2). When solving several related
systems (e.g., when investigating the impact of βi),
a considerable amount of time can also be saved by
using the steady state of one system as starting value
x(0) for the next system.

When applying the forward Gauss-Seidel iteration
[8], we compute x(k + 1) from x(k) by solving the
linear system

x(k + 1)(I − P (0)
g ) = x(k)P (d)

g ,

which can be done efficiently using forward substitu-

tion as (I − P
(0)
g ) is upper triangular. If x is an arbi-

trary stochastic vector, we initialize x(0) such that

it solves x(0)(I − P
(0)
g ) = x. As indicated in [8],

this Gauss-Seidel iteration is equivalent to a precon-

ditioned power method if we use (I−P
(0)
g ) as the pre-

conditioning matrix M . Notice, we can benefit from
the fast multiplications discussed in the previous sec-

tion when computing x(k)P
(d)
g as well as during the

forward substitution phase.
The GMRES method [9] computes an approximate

solution of the linear system (I − P ′
g)x = 0, by find-

ing a vector x(1) that minimizes
∥

∥(I − P ′
g)x

∥

∥

2
over

the set x(0) + K(I − P ′
g, r0, n). Here r0 is the resid-

ual of an initial solution x(0): r0 = −(I − P ′
g)x(0);

K(I − P ′
g, r0, n) is the Krylov subspace, i.e., the sub-

space spanned by the vectors {r0, (I −P ′
g)r0, . . . , (I −

P ′
g)n−1r0}; and n is the dimension of the Krylov sub-

space [6]. To do this GMRES relies on the Arnoldi it-
eration to find an orthonormal basis Vn for the Krylov
subspace, such that V ′

n(I − P ′
g)Vn = Hn, where Hn

is an upper Hessenberg matrix of size n. Once Vn

and Hn have been obtained, a vector yn is found such

that J(y) =
∥

∥

∥
βe1 − H̃ny

∥

∥

∥

2
is minimized. Here β is

the 2-norm of r0, e1 is the first column of the identity
matrix, and H̃n is an (n + 1) × n matrix whose first
n rows are identical to Hn, and its last row has one
nonzero element that also results from the Arnoldi
iteration. A new approximate solution x(1) is com-
puted as x(1) = x(0) + Vnyn. The process is then re-
peated with x(1) as x(0) until the difference between
two consecutive solutions is less than some predefined
ǫ. Although this algorithm is defined to solve linear
systems of the type Ax = b, with A nonsingular, it
can also be used to solve homogeneous systems with
A singular, as is the case with Markov chains [10].

The GMRES algorithm also benefits from the fast

multiplication discussed in the previous section. To
find the residual r0 at each iteration we need to
compute the product (I − P ′

g)x(0) = x(0) − P ′
gx(0).

Also, for the Arnoldi process we need to determine
the vectors vj = (I − P ′

g)j−1r0, which are computed
iteratively, and require n − 1 products of the type
(I − P ′

g)vj−1 = vj−1 − P ′
gvj−1. As with the power

method, when analyzing several scenarios we can use
the final approximate solution of one scenario as the
starting solution for the next one to speed up conver-
gence.

6. THE SAFETY STOCK
The required safety stock SSi for each retailer to

guarantee a certain fill rate is one of the main per-
formance measures of this supply chain problem. As
indicated in Section 3, computing SSi is equivalent to
determining the base-stock Si provided that we know
the mean replenishment lead time Tr (which equals
the floor of the production lead time Tp). The pro-
duction lead time distribution Tp is easy to obtain
from the steady state probability vector π of Pg as
follows. First define the length 2mg vectors πb(c) as
the steady state probabilities of being in a state with
Bn = b and Cn = c. Then, the probability of having
a production lead time of b slots equals

P [Tp = b] = ρπb(1)(e ⊗ u∗)/(1/d)

for b > 0, where ρ = 2(E[D(1)] + E[D(2)])/d is the
load at the manufacturer and 1/d is the arrival rate
of the joint orders.

The fill rate is defined as 1 − E[(−NS)+]/E[D],
where NS is the net stock (i.e., inventory on hand
minus backlog) and x+ = max{0, x}. Hence,
E[(−NS)+] is the expected number of backlogged
items. Similar to [3, Section 5.1], we can show that

NSi = Si +
k

∑

j=1

D(i) + O
(i)
k /β,

where k is the age, expressed in periods, of the joint
order in production at the manufacturer at the end

of a period and this joint order contains O
(i)
k items

for retailer i, for i = 1, 2. If k = 0, meaning the last

order left the queue before the end of the period, O
(i)
k

is the number of items ordered by retailer i in the
next joint order. Thus, the key step in determining
the required base-stock value Si, exists in computing

the joint probabilities p
(i)
k,q of having an order of age kd

in service when a period ends and the order in service
contains q items for retailer i, for i = 1, 2, k ≥ 0 and

q ∈ {1, . . . , m
(i)
D }.

These joint probabilities can be readily obtained
from the steady state of the Markov chain introduced
in Section 4.1 as

p
(i)
k,q = ρdπ

(i)
kd (q)e,

for k > 0, where π
(i)
b (q) is the steady state vector for

the states with Bn = b and O
g,(i)

a(n) = q. For k = 0, we

note that an order finds the queue empty upon arrival



if the previous order had a lead time of at most d−1,
yielding

p
(i)
0,q = ρd

d−1
∑

b=1

∑

q1,q2,s

πb(1, q1, q2, s)u
∗
spg(qi, q),

where πb(c, q1, q2, s) is the steady state probability of
state (b, c, q1, q2, s).

If we wish to compute the joint probabilities p
(2)
k,q

from the Markov chain (Bn, Cn, O
g,(1)

a(n) , Sn)n≥0 in case

only the first retailer smooths, things are somewhat
more involved when k > 0. For k = 0, we clearly have

p
(2)
0,q = P [Tp < d]P [D(2) = q].

For k > 0, we start by computing pw(q1, x), the prob-
ability that an order consisting of q1 items for retailer
1 has a waiting time of x > 0 slots. As the waiting
time x of an order with x > 0 equals the lead time of
the previous order minus the inter-arrival time d, we
find

pw(q1, x) =
ρd

π(q)

∑

q,s

πx+d(1, q, s)u∗
spg(q, q1),

where πb(c, q, s) is the steady state probability of state
(b, c, q, s) and π(q) is the probability that an arbitrary
order contains q items for retailer 1.

Next, we determine the probabilities po(q1, q2, y)
that an arbitrary joint order consists of qi items for
retailer i and its production time equals y time slots.
These probabilities are readily obtained from pg(q, q′)
and (α, U). Then,

pa(q1, q2, x) =
∑

y≥x

po(q1, q2, y)

2(E[D(1)] + E[D(2)])
,

is the probability that we find a joint order consist-
ing of qi items for retailer i in service at an arbitrary
moment when the server is busy, while the service of
this joint order started x time slots ago. Taking the
convolution over x between pw(q1, x) and pa(q1, q2, x)
and summing over q1, gives us the probability that the
order in service has an age of x time slots and consists
of q2 items for retailer 2, given that we observe the
system when the server is busy. From these probabil-

ities the joint probabilities p
(2)
k,q are readily found.

We can also compute the probabilities p
(2)
k,q from

the Markov chain in Section 4.1 by setting β2 = 1,
but this approach requires considerably more time
and memory. As required, the numerical experi-
ments indicated a perfect agreement between both
approaches.

7. NUMERICAL EXAMPLES
In this section we illustrate the effect of smooth-

ing on the performance of the production/inventory
system. We focus on the mean replenishment lead
time and the safety stock as the main measures of
performances, and consider various scenarios for the
demand distribution, the load and the smoothing pa-
rameters β1 and β2. The required safety stock in all
the numerical examples guarantees a fill rate of 0.98.
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Figure 1: Mean Lead Time vs. β - ρ = 0.85

For the demand we consider three different dis-
tributions, let us call the three associated random
variables X, Y and Z, respectively. X is defined
as X = 1 + X̂, where X̂ is a Binomial distribu-
tion with parameters N − 1 and p = 1/2. Thus,
X takes vales on the set {1, . . . , N}. The expected
value and variance of X are E[X] = (N + 1)/2 and
Var(X) = (N − 1)/4. The second random variable Y
is uniformly distributed between 1 and N , and its ex-
pected value and variance are E[Y ] = (N + 1)/2 and
Var(Y ) = (N2 − 1)/12. The last random variable is
defined as P (Z = k) = (1+α)P (Y = k)−αP (X = k),
for k = 1, . . . , N . As a result Z has a U-shaped prob-
ability mass function, with E[Z] = (N + 1)/2 and
Var(Z) = (N2 − 1 + α(N2 − 3N + 2))/12. Clearly,
for Z to be a proper random variable, the value of
α has to be such that P (Z = k) ≥ 0 for all k. In
our experiments we set N = 10, for which α can take
values up to roughly 0.68. We choose 0.6 to make
Z highly variable. With this setup, Var(X) = 2.25,
Var(Y ) = 8.25 and Var(Z) = 8.25+6α = 11.85. Also,
setting the maximum demand size to N = 10, the size
of the square blocks A0 and AD is 4000 (for g = 1).

As mentioned before, the mean production time is
set equal to 2, and for the experiments in this section
the standard deviation is also set to 2. The load is
set by adjusting d, the number of slots between two
orders placed by the retailers. In our setup we choose
d from the set {40, 34, 29, 26}, which generate loads
of roughly {0.55, 0.65, 0.76, 0.85}, respectively. In
the next section we start by looking at the case where
both retailers use the same value of the smoothing
parameters β1 and β2. Afterward we consider the
case where these parameters may differ.

7.1 Homogeneous smoothing
We start by looking at a system facing a load of

ρ = 0.85, and we consider values of β = β1 = β2

in the set {0.1, 0.2, . . . , 1}, and the three different de-
mands described above. The results are included in
Figure 1, where we observe that the mean replen-
ishment lead time is minimized at a β value differ-
ent from 1, meaning that both retailers benefit from
smoothing with respect to the replenishment time. As
expected, the effect of the smoothing increases with
the variability of the demand distribution. This con-
firms the ability of smoothing as a means to dampen
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Figure 2: Optimal β vs. ρ

variability. Although the behavior of the mean re-
plenishment lead time as a function of β is similar for
different loads, the load does affect the value of β for
which the mean lead time is minimized, as illustrated
in Figure 2. There we see that the optimal value of
β within the set {0.1, . . . , 0.9}, with respect to the
lead time, increases with the load, and this value is
smaller under uniform and U-shaped demand distri-
butions than under Binomial demand. This means
that smoothing is less beneficial under high loads. As
the load increases, the lead times are mostly affected
by the orders’ queueing time at the manufacturer, re-
ducing the effect of the order variability, and there-
fore, of applying a smoothing rule.

Next, we look at the behavior of the safety stock
together with the lead time. In Figure 3 we de-
pict the mean replenishment lead time E[Tr] vs. the
safety stock of one of the retailers. Since both re-
tailers use the same value for the smoothing pa-
rameter, β, the safety stock is the same for both.
As mentioned above, the values of β considered are
{0.1, 0.2, . . . , 1.0}, and the safety stock is largest
when β = 0.1. In the case of medium loads, β = 0.1
also produces a (almost) minimal replenishment lead
time. For higher loads, however, setting β too small
results in both a higher SS and an increase in the
mean lead time. Further, at high loads, decreasing
the value of β increases the SS consistently, but we
observe a rather large set of β values for which the SS
increases only slightly, while the mean lead time varies
more significantly. For instance, for a load of 0.85
and under Binomial demand, decreasing the value of
β below 0.5 implies a large increase in both SS and
mean lead time. However, values of β above 0.5 have
a comparatively small effect on the SS, but have a
significant influence on the mean lead time.

7.2 Heterogeneous smoothing
We now consider a system where each retailer

chooses the value of its smoothing parameter inde-
pendently. In Figure 4 we show the mean lead time
for different values of β1 and β2. In this case, where
the load is 0.85 and the demand follows a Binomial
distribution, we observe that the best value for β1 is
0.5, as selecting any other value of β1, among those
considered here, implies a larger mean lead time, in-
dependently of the value of β2. Similarly, choosing
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Figure 3: Safety Stock vs. Mean Lead Time
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β2 = 0.5 is optimal for every value of β1. Thus, there
exists an optimal choice of (β1, β2) that the retailers
and the manufacturer might agree upon, as they all
(especially the manufacturer) benefit from a less vari-
able order pattern and shorter lead times (the retail-
ers benefit either directly as their SS might decrease
or indirectly as the manufacturer will reward them for
the more regular order pattern).

We now introduce Figure 5, which conveys similar
information as Figure 3 in the previous section. In
this case we consider the total safety stock, i.e., the
sum of the safety stock of both retailers, against the
mean lead time. The demand is assumed to follow a
Binomial distribution and we consider different values
for β1 and β2. As before, due to the high load, increas-
ing any of the smoothing parameters decreases the
total SS. Whenever one of the smoothing parameters
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becomes too small, there is a large increase in both
the lead time and the SS. For larger βi values, de-
creasing βi causes a marginal increase in safety stock
and a decrease in mean lead time. Hence, the lead
time can be minimized without increasing the total
SS much. In this case we observe that β1 = β2 = 0.5
results in a minimum mean lead time.

In Figure 6 we consider the same scenario as in the
previous two figures, but we now look at the behav-
ior of the safety stock for each retailer. Recall that
here we left β1 fixed, and change the value of β2. The
highest value of SS2 corresponds to β2 = 0.1, and it
decreases as β2 increases. We observe a very signif-
icant decrease in SS2 when β2 increases from 0.1 to
0.4. Further increasing β2 has very little effect on the
safety stock of any of the retailers. This means that
the large decrease in the total SS observed before,
comes mostly from a decrease in the SS of retailer
2, which is the one modifying its smoothing param-
eter. However, and more importantly, the other re-
tailer also benefits from this smoothing since its SS
also decreases. As we showed before, setting β2 = 0.5
is optimal for the mean replenishment time, which is
most beneficial for the manufacturer. Therefore, all
the participants benefit from an adequate choice of
β2, creating an incentive for reaching agreements be-
tween them. It is interesting to note that these results
also hold for β1 = 1, i.e., when the first retailer does
not smooth. Thus, even if one of the retailers decides
not to smooth, the manufacturer will benefit from a
smoothing agreement with the other retailer.

For heterogeneous smoothing, we have so far con-
sidered the case where the demand follows a Bino-
mial distribution. We now look at the case where
the demand has a U-shaped distribution. The results
are shown in Figure 7(b), where we depict the total
safety stock, the mean lead time, and the safety stock
for each retailer, for different values of β1 and β2. As
in the previous scenarios, the case with β2 = 0.1 is
the point with the largest total SS in Figure 7(a).
As the value of β2 increases, the total SS decreases.
In this scenario we observe that the combination
(β1, β2) = (0.2, 0.2) generates the smallest mean re-
plenishment lead time. Increasing the value of any of
the smoothing parameters beyond this value increases
the mean lead time, but decreases the total SS. Here
we also observe that if β1 = 0.2, the minimal total
SS that can be achieved is significantly, more that
10%, higher than the one achieved for higher values
of β1. Although this also occurs under Binomial de-
mand, in this case the value of β1 that minimizes the
mean lead time (0.2) also forces the retailers to keep
a significantly larger SS than the one that could be
achieved with less or no smoothing. Therefore, it is
harder in this case for the manufacturer to agree with
the retailers on a smoothing pattern that minimizes
the mean lead time.

Another difference that arises from the higher de-
mand variability can be observed in Figure 7(b). As
opposed to the Binomial demand, the safety stocks of
the retailers do not decrease monotonically as β1 or
β2 increases. Keeping β1 fixed, at any of the values
considered, increasing β2 always decreases the SS of
retailer 2, but the SS of retailer 1 can also increase.
In other words, the SS of the first retailer increases if
the second retailer decides to stop smoothing, as long
as the smoothing parameter of the second retailer was
not too far from one. However, this increase is com-
paratively small and might not be enough to force the
retailers to agree upon a smoothing pattern. Also,
over-smoothing has a very negative effect on the SS
of the retailer that adopts that mechanism, especially
under highly variable demand.

7.3 Computation times and accuracy
We end the paper with a few results regarding the

accuracy and computation times required to obtain
the results in the paper with the power, Gauss-Seidel
and GMRES methods. Table 1 shows the accuracy of
both the power and Gauss-Seidel methods (for g = 1),
compared against a solution obtained with a precision
of 10−10, as well as the computation times and the
required number of iterations. Table 2 provides the
same info for the GMRES method, where the size of
the Krylov subspace was set equal to 1, 3 and 5, These
results corresponds to the example where the demand
follows a Binomial distribution, the load ρ = 0.85,
and both retailers smooth with β1 = β2 = 0.8. All
the experiments were run on a PC with 4 cores at
2.93GHz and 4GB of RAM. We observe that, for the



Table 1: Accuracy and computation times of the power and Gauss-Seidel method

Power Gauss-Seidel

10−6 10−7 10−8 10−6 10−7 10−8

SS 0.3% 0.1% 0.0% 0.6% 0.1% 0.0%

E[T] 0.2% 0.0% 0.0% 0.6% 0.1% 0.0%

time (sec) 31 54 79 1.7 3.0 4.4

iter 804 1207 1636 21 34 49

Table 2: Accuracy and computation times of GMRES

GMRES - n=1 GMRES - n=3 GMRES - n=5

10−6 10−7 10−8 10−6 10−7 10−8 10−6 10−7 10−8

SS 15.4% 8.0% 0.9% 9.7% 2.0% 0.3% 6.8% 1.2% 0.2%

E[T] 10.6% 4.7% 0.5% 6.9% 1.1% 0.1% 4.4% 0.6% 0.1%

time (sec) 15 34 105 21 64 290 38 170 446

iter 186 261 797 89 341 301 61 120 190

0.65 0.7 0.75 0.8 0.85
30

35

40

45

50

55

60

65

70

E[T
r
]

S
S

β
1
=0.2 β

1
=0.5 β

1
=0.8 β

1
=1.0

(a) Safety Stock vs. Mean Lead Time

16 18 20 22 24 26
15

20

25

30

35

40

SS
1

S
S

2

β
1
=0.2

β
1
=0.5

β
1
=0.8

β
1
=1.0

(b) Safety Stock per retailer

Figure 7: ρ = 0.85 - U-shaped demand

same precision level, the Gauss-Seidel method is far
superior to both the power method and GMRES, as
it requires far less time and has a similar accuracy
than the power method. This can be explained by
the fact that the Markov chain characterized by Pg

typically makes many consecutive upward transitions
according to A0 followed by an occasional downward
jump using Ad.

The accuracy of GMRES is quite poor when the re-
quired precision is low and is far worse than the power

or Gauss-Seidel method. As the precision increases
the difference in accuracy between GMRES and the
other methods becomes smaller (and eventually negli-
gible). GMRES is faster than the power method for a
precision of 10−6 and when n is one or three, but the
accuracy of GMRES is far worse in these cases. As
the precision is tightened and n is increased, GMRES
becomes slower than the power method.

As stated in Section 5.2 the Gauss-Seidel method
may be regarded as a preconditioned power method
where the preconditioning matrix M is equal to

(I−P
(0)
g ). In principle we can use the same precondi-

tioning for GMRES, which should improve the perfor-
mance of GMRES significantly. However, as GMRES
is typically inferior to the power method, it seems
unlikely that we can do better than the Gauss-Seidel

method using (I −P
(0)
g ) as a preconditioning matrix.

We are also planning to explore other iterative meth-
ods and preconditioning matrices to see whether the
computation times can be further improved.

Finally, we should mention that a significant
amount of the computation time is devoted to allo-
cating memory (due to the large sizes of the vectors,
e.g., for a precision of 10−8, the final vector x has
a length of 732000 using Gauss-Seidel). Since GM-
RES computes n large vectors, it is more significantly
affected by the memory allocation delay. Also, the
computation times of all the methods are highly in-
fluenced by the system parameters, especially by the
load ρ and the variance of the demand and process-
ing times. Larger values for these parameters imply
longer computation times and larger memory require-
ments.
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