
Analyzing M/G/1-type Markov chains
with low-rank downward transitions

Juan F. Pérez and Benny Van Houdt
Performance Analysis of Telecommunication Systems Research Group

Department of Mathematics and Computer Science, University of Antwerp - IBBT
Middelheimlaan 1, B-2020 Antwerp, Belgium

Email:{juanfernando.perez, benny.vanhoudt}@ua.ac.be

Abstract—In this paper we analyze M/G/1-type Markov chains
(MCs) where, in a downward transition, the phase variable faces
a partial renewal. We refer to this characteristic as low-rank
downward transitions. To analyze a chain of this type we define
a new M/G/1-type MC, by adding a few artificial states to each
level. In this new MC, any downward transition takes the phase
to one of the additional states only. In previous works, it has
been shown that this type of transitions induces a structure that
can be exploited to speed up the computation of the matrix G.
However, to find G it is necessary to solve a linear system, which
has been solved efficiently for two special cases only. Here we also
introduce a method to solve this system in general by means of
the Schur decomposition. We illustrate numerically the important
reduction in computation time obtained by exploiting the low-
rank transitions.

I. INTRODUCTION

A discrete-time M/G/1-type Markov chain (MC) is a two-
dimensional process {(Nn, Xn), n ≥ 0}, where Nn is called
the level variable, and Xn the phase variable [1]. The level
takes values on N, and the phase does it on a finite set of
size m0 or m depending on whether the level is equal to or
greater than 0. In addition, in a single transition the value of the
level variable can increase without bounds, but it can decrease
either by one or to zero. Also, the transition probabilities are
assumed to be level-independent, i.e., the transition probability
from a state (i, j) to a state (k, l) may depend on j, l, and
the difference i − k, but not on the specific values of i and
k. By ordering the state space lexicographically, the transition
probability matrix P of an M/G/1-type MC can be written as

P =

B0 B1 B2 B3 B4 · · ·
C0 A1 A2 A3 A4 · · ·
C1 A0 A1 A2 A3 · · ·
C2 0 A0 A1 A2 · · ·
C3 0 0 A0 A1 · · ·
...

...
.

,

where {Ai, i ≥ 0}, {Ci, i ≥ 0}, {Bi, i ≥ 1} and B0 are non-
negative matrices in Rm×m, Rm×m0 , Rm0×m and Rm0×m0 ,
respectively, such that

∑+∞
i=0 Bie = e, C0e +

∑+∞
i=1 Aie = e,

and Cje +
∑+∞

i=0 Aie = e, for j ≥ 1, where e is a column
vector of ones of appropriate size. The stationary probability
vector of this chain, i.e., the vector π = [π0, π1, π2, . . .]
such that πP = π and πe = 1, can be found by means of

Ramaswami’s formula [2], that relies on the matrix G, which
is the minimal non-negative solution of

G =
∞∑

i=0

AiG
i. (1)

To compute G one can rely on functional iterations [1],
Ramaswami’s Reduction [3], or Cyclic Reduction (CR) [4].
However, when the block-size m becomes large, even the
fastest algorithms may require long computation times. An
alternative to overcome this problem is to consider the inner
structure of the blocks {Ai, i ≥ 0}. This approach has been
taken in [5], where the blocks are assumed to be triangular,
allowing a fast computation of G. Another interesting structure
arises if the block A0 is assumed to have a few nonzero
columns only. This structure was originally proposed in [6]
for Quasi-Birth-and-Death (QBD) MCs, a case that was further
analyzed in [7]. There, the matrix G is found by applying a
censoring argument and solving a Sylvester matrix equation
[8]. Moreover, these results were generalized in [9] to the case
of M/G/1-type MCs, where the structure of A0 is exploited
not only to compute G, but also in Ramaswami’s formula to
compute π. However, in the M/G/1-type case, to find G it is
necessary to solve a general linear system, which in [9] is
done efficiently for two special cases only.

Our contribution: In this paper we extend the work in [7],
[9] by introducing and analyzing the more general type of low-
rank transitions. An M/G/1-type MC is said to show low-rank
downward transitions if, during a transition that decreases the
value of the level, the phase variable faces a partial renewal.
Under a partial renewal, the value of the phase variable after
a downward transition can be determined without knowing
the precise state, as a partial description suffices. Moreover,
this partial description takes values of a finite set of size
r � m. If this property holds, a new M/G/1-type MC can
be defined by adding r artificial states in each level. In this
chain any downward transition leads to one of the r artificial
states, which induces a structure that can be exploited with the
methods in [9]. This methodology will be described in detail
in Section III. As mentioned above, in the M/G/1-type case,
to find the matrix G one must apply a censoring argument,
solve a nonlinear equation with matrices of smaller size, and
solve a general linear system. However, in [9] this system is
solved efficiently for two special cases only. In Section IV

we present a method to solve this linear system efficiently in
general. Although we focus on M/G/1-type MCs, the methods
introduced here can be easily adapted to deal with other
structured MCs, such as QBD and GI/M/1-type MCs.

In the next section, we motivate the study of M/G/1-type
MCs with low-rank transitions by means of the discrete-time
preemptive priority queue with batch arrivals. This example
will be used in Section V to illustrate numerically the benefit
of exploiting low-rank transitions.

II. THE DISCRETE-TIME PREEMPTIVE PRIORITY QUEUE

Here we consider a BMAP/PH/1 preemptive priority queue
in discrete time with two priority classes, high and low. A
low-priority priority customer is served only if there are no
high-priority customers in the queue. Also, if a low-priority
customer is being served, and a high-priority one arrives, the
server interrupts its current service and starts serving the high-
priority one. When all the high-priority customers in the queue
have been attended, the low-priority one that was preempted
can (re-)start its service. The service times of the high-priority
customers follow a Phase-Type (PH) distribution [10] with
parameters (m1

s, α, T). Here α is a 1 ×m1
s stochastic vector

and T is an m1
s ×m1

s sub-stochastic matrix. Also, the service
times of the low-priority customers follow a PH distribution
characterized by (m2

s, β, S). The inter-arrival times follow a
batch Markovian arrival process (BMAP) characterized by
the matrices {Dij , 0 ≤ i ≤ L1, 0 ≤ i ≤ L2}, where the
matrix Dij holds the transition probabilities associated with
the arrival of a batch carrying i high-priority and j low-priority
customers. Here L1 (resp. L2) is the maximum batch size of
high- (resp. low-) priority customers. To model this queue as
an M/G/1-type MC one can choose the level to be the number
of low-priority customers in the queue, as this ensures that in
a single transition the level can decrease by at most one. On
the other hand, the phase carries the number of high-priority
customers, the state of the arrival process and the state of the
current service. If a high priority customer is being served
and there is at least one low-priority customer in the queue,
the phase also holds the state in which the next-in-line low-
priority customer will (re-)start its service whenever it gets
access to the server. For the phase space to be finite, the high-
priority buffer is assumed to be of size C < ∞. This poses
no actual limitation to the model since C can be chosen large
enough to cause very few high-priority losses. Moreover, high-
priority queues are typically fairly short compared to low-
priority queues. Hence, there is little difference between a,
sufficiently large, finite or an infinite high-priority buffer.

As the exact form of the matrices {Ai, i ≤ 1}, {Bi, i ≤
0} and {Ci, i ≤ 0} is irrelevant for our discussion we limit
ourselves to the m×m matrix A0:

A0 =

D00 ⊗ sβ D10 ⊗ sβ ⊗ α · · · DL10 ⊗ sβ ⊗ α 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

 ,

where s = e − Se, and m = mam2
s(1 + Cm1

s). The phase
space is ordered lexicographically: the first component carries
the number of high-priority customers; the second keeps track
of the state of the arrival process; the third component holds
the state of the current low-priority customer in service, or
the state in which the next-in-line customer of this type will
re-start its service; and the last component holds the state of
the current high-priority service, if any. Since the block A0

holds the transition probabilities associated with a decrease in
the number of low-priority customers, and this can only occur
if there are not high-priority customers in the queue, only the
first block-row of this matrix is different from zero.

Also, in a single transition at most L1 high-priority cus-
tomers may arrive, and therefore the block A0 has mam2

s(1+
L1m

1
s) nonzero columns. Depending on the values of C and

L1, the number of nonzero columns could be small enough,
compared to m, for the methods in [9] to provide a significant
gain in computation time. However, one can go one step
further by noticing that in a downward transition the process
only needs to remember the state of the arrival process, since
the service processes face a renewal, i.e., the new state of
these processes is not influenced by their previous state. In
the next section we will show how this M/G/1-type MC can
be transformed into a new one where the downward transitions
trigger the phase to a set of size ma only. As a result,
in the new chain the number of nonzero columns in A0 is
m2

s(1 + Cm1
s) times smaller than the original block size, and

a significant gain in computation times can be expected by
using the methods in [9], even for small values of C.

III. LOW-RANK TRANSITIONS

Let us start with an M/G/1-type MC {(Nn, Xn), n ≥ 0},
where the phase space, when Nn > 0, is of size m. Now,
assume that the variable Xn can be decomposed into two
components: Xn = (Yn, Zn), for n ≥ 0. The variable Yn takes
values on the set {1, . . . , r}, while Zn does so on {1, . . . , h},
with rh = m. Therefore, the ((i, j), (k, l))-th entry of A0 can
be written as

P [Nn+1 =a−1, Yn+1 = k, Zn+1 = l|Nn =a, Yn = i, Zn =j]
=P [Yn+1 =k, Zn+1 = l|Nn+1 =a−1, Nn =a, Yn = i, Zn =j]

× P [Nn+1 = a−1|Nn = a, Yn = i, Zn = j],

for a > 1. The first term on the right-hand side holds the
probability that the tuple (Yn+1, Zn+1) takes the values (k, l),
given that there is a downward transition at time n and
(Yn, Zn) = (i, j). We now introduce the low-rank (partial
renewal) assumption: the value of (Yn+1, Zn+1) may depend
on Yn, but not on the value of Zn. Still, the probability
of having a downward transition at time n may depend on
the value of both Yn and Zn. Under this assumption the
((i, j), (k, l))-th entry of A0 becomes

P [Nn+1 = a−1, Yn+1 = k, Zn+1 = l|Nn =a, Yn = i, Zn =j]
=P [Yn+1 = k, Zn+1 = l|Nn+1 = a−1, Nn = a, Yn = i]

× P [Nn+1 = a−1|Nn = a, Yn = i, Zn = j],

which are independent of a ≥ 2. Therefore, we have de-
composed the entries of A0 in two parts: one regarding the
probability that a downward transition occurs at time n, given
that (Yn, Zn) = (i, j); and the other holding the probability
that (Yn+1, Zn+1) = (k, l), given that a downward transition
occurs at time n and Yn = i.

We can assemble these probabilities in matrix form by
defining the m × r sub-stochastic matrix V and the r × m
stochastic matrix W . Let the rows of the matrix V be indexed
lexicographically as the phase space, and the ((i, j), i)-th entry
of this matrix be equal to the (i, j)-th entry of the column
vector A0e. In other words, the ((i, j), i)-th entry of V holds
the probability that a downward transition occurs at time
n, given that (Yn, Zn) = (i, j). On the other hand, let the
(i, (k, l))-th entry of the matrix W be equal to the probability
that (Yn+1, Zn+1) = (k, l), given that a downward transition
occurs at time n and Yn = i. Therefore, we have A0 = V W .

With this decomposition of A0 we define a new M/G/1-type
MC with (m + r)× (m + r) blocks {Âi, i ≥ 0} given by

Â0 =
[

0 0
V 0

]
, Â1 =

[
0 W
0 A1

]
, Âj =

[
0 0
0 Aj

]
, j ≥ 2.

To complete the description of this chain, let its boundary
blocks be given by

B̂0 = B0, Ĉ0 =
[
0r×m0

C0

]
, B̂i =

[
0m0×r Bi

]
, i ≥ 1,

where 0m×n is an m× n zero matrix. This new MC has two
main characteristics that make it attractive. First, its block Â0

has r nonzero columns only, and therefore the methods in [9]
can be applied to speed up the computation of its stationary
vector π̂ = [π̂0, π̂1, π̂2, . . .]. Second, if this MC is observed
in the states {{(0, j), 1 ≤ j ≤ m0} ∪ {(i, j), i ≥ 1, r + 1 ≤
j ≤ r + m}} only, we obtain the original MC. Therefore,
we can compute the stationary vector π of the original chain
from the vector π̂. To do this, let the vector π̂i be partitioned
as π̂i = [π̂+

i , π̂−i], for i ≥ 1, where π̂+
i corresponds to the

first (additional) r states in level i. Let K be the probability
that the new MC is in any of the additional states in steady
state, i.e., K =

∑
i≥1 π̂+

i e. Then, we can find the stationary
probability vector of the original chain as π0 = π̂0/(1−K),
and πi = π̂−i /(1−K) for i ≥ 1.

In conclusion, by defining this new M/G/1-type MC of
slightly larger block size, we are able to speed up the computa-
tion of the stationary vector of the original chain by exploiting
the small number of nonzero columns in Â0. To to this, we
follow [7], [9], partitioning the blocks {Âi, i ≥ 0} as

Âi =
[
A++

i 0
A−+

i 0

]
, Âi =

[
A++

i A+−
i

A−+
i A−−i

]
, 1 ≤ i ≤ N,

where N is the smallest integer such that Âi = 0 for i > N .
Here A++

i and A−−i are square matrices of size r and m,
respectively. Due to the structure of Â0, we know [9] that the
matrix Ĝ has a similar structure, namely

Ĝ =
[
G+ 0
G0 0

]
,

where G+ (resp. G0) is an r× r (resp. m× r) matrix. These
two sub-matrices can be computed separately, as shown in
[9]. First, G+ is found by censoring the chain, observing it
only when its phase variable is in one of the r additional
phases. This defines a new M/G/1-type MC with blocks of
size r, the G matrix of which is equal to G+. After finding
G+, we obtain G0 by solving a linear system, which results
by rewriting Equation (1) in block form and considering the
structure of Â0 and Ĝ. Extracting the lower-left block of that
equation we find

−
N∑

i=1

A−−i G0G
i−1
+ =

N∑
i=0

A−+
i Gi

+. (2)

As G0 is the only unknown term, this is a general linear system
of the form

∑N
i=1 AiXBi = C. This system has mr unknowns

and equations, therefore its solution by general procedures
has a time complexity of O(m3r3). Assuming a large m,
this system can be solved directly if r is very small. Another
possibility is to use an iterative approach as those proposed
in [11], although these are not guaranteed to converge to the
actual solution. Also, in [9] it was shown how to solve this
equation in O(m3) time for two special cases. In the next
section we present a method to solve this system in general
in O(m3r) time.

IV. SOLVING THE GENERAL LINEAR SYSTEM

To solve the system (2) we start by observing that it has
a special characteristic: the matrices that post-multiply the
unknown matrix G0 are all powers of the same matrix G+. The
key to exploit this fact is to apply a real Schur decomposition
[12] to G+, i.e., to find an orthogonal matrix U ∈ Rr×r such
that U ′G+U = T , where ′ denotes the transpose operator.
Recall that a matrix U is called orthogonal if U ′U = UU ′ = I .
The matrix T ∈ Rr×r is upper quasi-triangular, meaning it is
block upper triangular and the diagonal blocks are of size one
or two [12]. We now post-multiply (2) by U to obtain

−
N∑

i=1

A−−i G0UU ′Gi−1
+ U =

N∑
i=0

A−+
i Gi

+U,

which, since U ′Gj
+U = T j for any nonnegative integer j, can

be rewritten as

−
N∑

i=1

A−−i G0UT i−1 =
N∑

i=0

A−+
i Gi

+U.

Now let Y =
∑N

i=0 A−+
i Gi

+U , which is a known matrix, and
let X = G0U , to obtain

−
N∑

i=1

A−−i XT i−1 = Y. (3)

This system can be equivalently written column-wise as

−
N∑

i=1

A−−i

r∑
j=1

[T i−1]jkXj = Yk, (4)

for k = 1, . . . , r, where Mk and [M]i,j are the k-th column
and the (i, j)-th entry of a matrix M , respectively.

Notice, in Equation (3) the matrices that post-multiply X
are all upper quasi-triangular matrices and have the same block
structure, as they all are powers of T . Therefore it is possible
to iteratively compute the columns Xk, starting with X1. Let
us assume that we have already found {X1, . . . , Xk−1} and
we want to compute Xk, for some 1 ≤ k ≤ r. Given the upper
quasi-triangular nature of T , there are two possibilities. The
first is that the entry [T]k+1,k is zero, meaning that Equation
(4) can be rewritten as

−
N∑

i=1

A−−i [T i−1]kkXk = Yk +
N∑

i=1

A−−i

k−1∑
j=1

[T i−1]jkXj .

Therefore we can obtain the column Xk by solving a linear
system of size m, which requires O(m3) time. The second
case is when [T]k+1,k 6= 0, which, due to the upper quasi-
triangular structure (the diagonal blocks are at most of size
two) implies that [T]k+2,k+1 = 0. Therefore we can find the
columns Xk and Xk+1 simultaneously by solving the system

−

[∑N
i=1 A−−i [T i−1]kk

∑N
i=1 A−−i [T i−1]k+1,k∑N

i=1 A−−i [T i−1]k,k+1

∑N
i=1 A−−i [T i−1]k+1,k+1

][
Xk

Xk+1

]
=

[
Ŷ k−1

k

Ŷ k−1
k+1

]
,

where Ŷ l
k = Yk +

∑N
i=1 A−−i

∑l
j=1[T

i−1]jkXj , for 1 ≤ l ≤
k − 1 and 1 ≤ k ≤ r. This is a linear system with 2m
unknowns that requires O(m3) time to be solved. As a result
we can start by finding the first (two) column(s) of X and
iteratively compute the others. After we have computed X , G0

is obtained from G0 = XU ′. Since the Schur decomposition
of G+ requires O(r2) time and r � m, the computation of
G0 has a time complexity of O(m3r).

V. NUMERICAL RESULTS

In this section we make use of the discrete-time preemptive
priority queue with batch arrivals described in Section II, to
illustrate the computational gains obtained by exploiting the
low-rank transitions. The load ρ for this queue is given by
ρ = λ1/µ1 + λ2/µ2, where λ1 (resp. λ2) is the arrival rate
and µ1 (resp. µ2) is the service rate for the high- (resp. low)
priority customers. Table I shows the computation times for
various load values, with a high-priority buffer of size 10 and
20. The batch size is uniformly distributed between 1 and L
for both customer types, L being equal to 3 or 5. The arrival
process for each customer type is a BMAP process with two
states: an ON state where batch arrivals occur with geometric
inter-arrival times; and an OFF state where no arrivals occur.
The sojourn time in these states is geometrically distributed,
and the ratio γ between the mean sojourn time in the OFF and
the ON states is a measure of the arrival process’ burstiness.
We set γ = 5, i.e., a sojourn in the OFF state lasts on average
5 times more than a sojourn in an ON state. The arrival and
service processes representations have sizes ma = 4 and

Table I
COMPUTATION TIMES (SEC) TO FIND π

ρ C = 10 - L = 3 C = 20 - L = 5

FI CR RTo RTn FI CR RTo RTn

0.1 0.9 31.7 3.1 0.2 7.4 519.8 17.5 1.6
0.3 1.5 66.0 4.5 0.3 13.0 - 30.0 2.3
0.5 2.6 80.0 7.3 0.4 22.4 - 61.5 3.4
0.7 4.9 99.6 11.1 0.6 42.2 - 97.2 5.3
0.9 12.1 123.0 19.6 1.0 126.8 - 169.3 12.1

m1
s = m2

s = 2. Therefore, for C = 10 and L = 3, the
block size of the original chain is 168, the number of nonzero
columns in A0 is 56, and the number of artificial states is 4.
For C = 20 and L = 5, these figures are 328, 88 and 4. The
table shows the total time to compute π applying: CR and a
functional iteration (FI), based on the matrix U [10], directly
on the chain with block-size m; the methods in [9] exploiting
the fact that the block A0 has mam2

s(1 + L1m
1
s) nonzero

columns (RTo); and the methods introduced here combined
with those in [9], defining a new chain where the block Â0

has ma nonzero columns (RTn). In the two latter cases the
CR algorithm is used to find the matrix G+. Under this setup,
FI requires less computation time than CR, but exploiting the
low-rank transitions we obtain a significant gain, comparing
with any of the other methods. Moreover, when m is large the
CR algorithm on the original chain fails to run due to lack of
memory (-), while the method based on the low-rank transition
is able to compute π in a few seconds.

REFERENCES

[1] M. F. Neuts, Structured stochastic matrices of M/G/1 type and their
applications. Marcel Dekker Inc., 1989.

[2] V. Ramaswami, “A stable recursion for the steady state vector in Markov
chains of M/G/1 type,” Stochastic Models, vol. 4, pp. 183–188, 1988.

[3] ——, Advances in Matrix Analytic Methods for Stochastic Models.
Notable Publications Inc., 1998, ch. The generality of quasi birth-and-
death processes, pp. 93–114.

[4] D. A. Bini and B. Meini, “On the solution of a nonlinear matrix equation
arising in queueing problems,” SIAM Journal of Matrix Analysis and
Applications, vol. 17, pp. 906–926, 1996.

[5] B. Van Houdt and J. S. H. van Leeuwaarden, “Triangular M/G/1-type
and tree-like QBD Markov chains,” to appear in INFORMS Journal on
Computing.

[6] W. K. Grassmann and J. Tavakoli, “Solving QBD processes when levels
can increase only in certain phases,” manuscript in preparation, presented
at the MAM6 conference, Beijing (China), June 2008.

[7] J. F. Pérez and B. Van Houdt, “Exploiting restricted transitions in quasi-
birth-and-death processes,” in Proceedings of the Sixth International
Conference on the Quantitative Evaluation of Systems (QEST), 2009.

[8] G. H. Golub, S. Nash, and C. Van Loan, “A Hessenberg-Schur method
for the problem AX+XB=C,” IEEE Transactions on Automatic Control,
vol. 24, pp. 909–913, 1979.

[9] J. F. Pérez and B. Van Houdt, “The M/G/1-type Markov chain with
restricted transitions and its applications to queues with batch arrivals,”
under review.

[10] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling, ser. ASA-SIAM Series on Statistics and
Applied Probability. Philadelphia, PA: SIAM, 1999.

[11] D. Bini, G. Latouche, and B. Meini, “Solving nonlinear matrix equa-
tions arising in tree-like stochastic processes,” Linear Algebra and its
Applications, vol. 366, pp. 39–64, 2003.

[12] G. H. Golub and C. Van Loan, Matrix Computations. The Johns
Hopkins University Press, 1996.

