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Abstract

Optical Grid networks allow many computing sites to share their resources by con-
necting them through high-speed links, providing a more efficient use of the resources
and a timely response for incoming jobs. These jobs originate from users connected to
each of the sites and, in contrast to traditional queueing networks, a particular job does
not have to be processed in a predefined site. Furthermore, a job is always processed
locally if there is an available local server. In this paper we propose two different methods
to approximate the performance of an optical Grid network with a ring topology. The
first method is based on approximating the inter-overflow time process, while the second
separately characterizes the periods where jobs are overflowed and the periods where they
are served locally. Both approaches rely on a marked Markovian representation of the
overflow process at each station and on reducing this representation by moment-matching
methods. The results show that the methods accurately approximate the rate of locally
processed jobs, one of the main performance measures.

1 Introduction

Optical grid networks offer the possibility of sharing resources between several computing
sites/stations by connecting them through high-speed links. Each of these sites is typically
connected to a number of users who request the processing of tasks/jobs in any of its servers.
The site always tries to process the jobs locally but, if all its servers are busy, the jobs can be
sent to any of the other sites. Furthermore, there is no preference about where the jobs should
be processed [10, 11]. Thus, the site where a particular job is served depends not only on a
predefined routing matrix, but also on the server availability, the scheduling algorithm and
the topology of the network. In this paper we focus on a grid network with a ring topology
where each station is physically connected to only one other site through an unidirectional
fiber link. If an incoming job finds all the local servers busy, the job is sent to the next station
in the ring where it is served by an available server. If no servers are available in that station,
the job is sent again to the next site. In this manner the job goes from one station to the
next trying to find an idle server. After trying all the stations once, the job is dropped from
the network. This description reveals two main characteristics of the grid ring network: first,
the jobs transmitted from one site to another form an overflow process; second, every station
in the ring receives both newly-generated and overflowing jobs, which may come from any of
the other sites.

A grid network typically consists of many stations and, thus, the scalability of the methods
to analyze these networks is of major importance. In this work we decompose the network
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in single nodes to perform the analysis of each station separately. This technique has been
widely used in the analysis of queueing networks that do not have a product-form solution.
Particularly, moment-matching methods have played a key role in approximating the arrival,
departure and overflow processes of the single nodes in the network, see [25, 26, 37] and
references therein. This approach has been used recently to approximate the departure process
of queues with Markovian input [19, 20, 21, 22]. Since the traffic between stations in the
ring forms an overflow process, the analysis of teletraffic networks with alternate routing is
particularly relevant [24, 25, 30, 31, 38]. In those networks the incoming traffic is first offered
to a trunk group with a finite buffer. If the buffer has no available space, the traffic is sent
to an alternative trunk group, forming an overflow process. To compute the performance
measures for each of the flows in the network separately, the methods in [25, 31] rely on
representing each of these flows as an independent process. This approach is well-suited for
general networks with different routing patterns, but dimensionality problems arise when
analyzing even small networks. In [30] the authors propose to group all but one overflow
process into a single description in order to model the arrival process at each station with
one Poisson and two overflow processes. With this method the dimensionality problems are
avoided, but an additional approximation is introduced.

In this work we exploit the ring structure to approximate the overflow process at each sta-
tion by means of a marked Markovian point process. The markings are used to differentiate
each of the flows in the network, leading to a more compact representation of the overflow
process. This representation has to be further reduced to make the analysis of the network
feasible. We propose two different methods to build an approximate reduced representation of
the overflow process. The first approach aims at approximating the stationary inter-overflow
time process by matching a set of higher (joint) moments that uniquely characterize the re-
duced point process. The second approach separately characterizes the periods where jobs
are overflowed and the periods where they are served locally, combining their reduced rep-
resentation into a single one. The first approach is stepwise; we start by approximating the
stationary inter-overflow time distribution with a renewal process that matches three first
moments relying on Phase-Type distributions. We then analyze the effect of capturing more
moments by relying on the class of Matrix-Exponential distributions. Additionally, we include
information of the joint moments of successive inter-overflow times by using recent match-
ing methods based on the marked and unmarked versions of the Rational Arrival Process.
These approximations are tested for different network parameters with particular emphasis
on computing the rate of locally processed jobs (local rate) and the total traffic matrix. This
is of vital importance when dimensioning the link capacities interconnecting the different
sites [10, 12]. The results show that the methods are able to adequately approximate these
measures, being especially accurate for the local rate.

The paper is organized as follows. Section 2 provides a description of the grid network
as well as a discussion of some characteristics common to both approximation methods. The
approximation method based on the inter-overflow time process is presented in Section 3,
while the second method, called ON-OFF, is introduced in Section 4. Section 5 compares the
performance of both methods for various realistic network configurations.

2 The grid network

We consider a grid network that consists of N nodes arranged in a ring topology. The job
arrivals at node i are represented by a Poisson process with rate λi (this assumption will be
relaxed to allow for more general arrival processes as described at the end of this section).
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The Poisson assumption is based on Grid level measurements [9] and has been employed in
previous works on Grid dimensioning [10, 12]. When a job arrives at node i, it is served by
any of the Ci servers in that node, if at least one is available. In case all of them are busy,
the job is sent to the next node in the ring. The job jumps from one node to the next until
it finds an idle server. If a job originating in node i arrives at station i − 1 and there are
no available servers, it must be dropped. Thus, a job that has tried all the stations once is
dropped in the station before the one where it was generated. The service time of a job in
station i is assumed to be exponentially distributed with rate µi. This means that the service
time depends on the station serving the job, but not on the station where it entered the grid
(in other words, all sites generate similar jobs).

Even in the case where each type of job comes from a Poisson process, the actual flow that
arrives to a particular station is a complex mixture of all the job types present in the network.
Hence we will approximate the input process1 at station i as a marked Markovian Arrival
Process [16] (MMAP[N]) characterized by a set of mi×mi matrices {Di

0, D
i
1, . . . , D

i
N}. These

matrices will be built through an iterative process in order to incorporate information about
the overflowing jobs along the network into the analysis of each station. The MMAP[N] is a
point process well suited for modeling purposes since it admits general inter-arrival times and a
correlation structure. The process is driven by an underlying Continuous-Time Markov Chain
(CTMC) with generator matrix Di =

∑N
j=0 Di

j . Each of its transitions might generate zero

or one arrival. The matrix Di
0 describes phase transitions without arrivals, while the matrices

{Di
j , j = 1, . . . , N} describe the transition rates related to an arrival of type (originated in

station) j. These matrices as well as the off-diagonal elements of Di
0 are non-negative, while

the diagonal elements of Di
0 are negative and such that Di1 = 0, where 1 and 0 are column

vectors with all its entries equal to 1 and 0, respectively.
Let {Ni(t), t ≥ 0} (resp. {Ji(t), t ≥ 0}) be the number of busy servers (resp. the phase of

the arrival process) at station i at time t. Then {(Ni(t), Ji(t)), t ≥ 0} is a CTMC on the state
space {(k, l), 0 ≤ k ≤ Ci, 1 ≤ l ≤ mi}, that describes the state of the station i, based on the
approximated arrival process. Its generator matrix is given by

Qi =



















Di
0 Di

+ 0 . . . 0 0
µiI Di

0 − µiI Di
+ . . . 0 0

0 2µiI Di
0 − 2µiI . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Di
0 − (Ci − 1)µiI Di

+

0 0 0 . . . CiµiI Di − CiµiI



















, (1)

where Di
+ =

∑N
j=1 Di

j and Di = Di
0 + Di

+.

If the matrices {Di
0, D

i
1, . . . , D

i
N} are specified, the steady state probability vector can be

easily computed by exploiting the structure of matrix Qi as a finite Quasi-Birth-and-Death
(QBD) process [14, 27, 32]. The time and memory complexity of the algorithm in [14] to
compute the steady-state distribution are O(Cim

3
i ) and O(Cim

2
i ), respectively. Nonetheless,

the arrival process to a particular station is determined by the superposition of the new
arrivals arriving at that station and the overflow process coming from the previous station
in the network. Even though these could be exactly represented by including in the arrival
process the state of all the stations in the network, the size of such a representation is huge
even for a small number of sites and servers per site. Previous work by Meier-Hellstern [31]
considers the problem of approximating the arrival process at each station by representing each

1In Section 3.1.2 we will relax this approximation to a marked Rational Arrival Process (MRAP[N])
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of the flows in the network as a Markov Modulated Poisson Process (MMPP) and combining
them for each station. An MMPP can be seen as an MMAP[1] where only the matrix D1 is
specified and it has zero off-diagonal elements. In [31] the algorithm of Heffes [18] is used to
reduce each of the MMPPs to be of size 2. Even though this approximation is well suited
to represent different routing strategies, it does not scale well with the number of stations
because the input process to a particular station is of size 2N−1. Our approximation methods
make use of the ring structure to avoid this large size while keeping meaningful information
about the overflow process at each site.

The overflow process at station i can be represented as an MMAP[N] with parameters
{Ei

0, E
i
1, . . . , E

i
N} given by

Ei
0 =



















Di
0 Di

+ 0 . . . 0 0
µiI Di

0 − µiI Di
+ . . . 0 0

0 2µiI Di
0 − 2µiI . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Di
0 − (Ci − 1)µiI Di

+

0 0 0 . . . CiµiI Di
0 + Di

s − CiµiI



















, (2)

Ei
j =







0 . . . 0
...

. . .
...

0 . . . Di
j






, j = 1, . . . , N, j 6= s,

and Ei
s = 0, where s denotes the next station after node i and 0 is a zero matrix of appropriate

dimension. This representation reflects the fact that the jobs originating from station s must
be dropped if they can not be served in node i. Even though this representation is exact, it
is not useful for practical implementation, because the size of the matrices that describe the
overflow process becomes extremely large after a few stations. Thus, it is useful to reduce the
size of these matrices such that the reduced representation keeps some characteristics of the
original and can be used as part of the arrival process at the next station. We propose two
different methods to find an approximate representation of the overflow process, which result
in an MMAP[N] with matrices {D̄i

0, D̄
i
1, . . . , D̄

i
N}. The first one is based on the approximation

of the inter-overflow time process. The second method divides the representation of the
overflow process into two sets: one characterizes the time periods where any arriving job is
sent to the next station (ON period), while the other captures the behavior of the site when
there are servers available to process an incoming job (OFF period). Even though each of
the approximation methods relies on a different type of information, some main features are
alike. For example, both methods represent the overflow process at station i by means of
a reduced MMAP[N] (or a generalization of it) with parameters {D̄i

0, D̄
i
1, . . . , D̄

i
N}. Other

common features are presented in the next section.

2.1 Common characteristics of the approximation methods

Iterative approach: The ring topology implies that all the nodes receive both newly gen-
erated and overflow jobs, meaning that the arrival process at each station depends on the
analysis of the previous one. To contemplate this, both methods consider an iterative strategy
in which an arbitrary site is first analyzed considering only its own traffic. The next station
in the ring is then considered, including both newly generated and overflow jobs (from the
previous station only). The analysis continues at each station and, after considering all the
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stations once, the overflow process contains jobs of (possibly) all types. Then, it is possible
to reanalyze the “first” station, but now the arrivals include both newly generated jobs as
well as jobs coming from (possibly) all the other sites in the ring. This sequential analysis
is performed several times for each site until the traffic matrix (that contains the amount of
traffic between each pair of sites) changes less than a predetermined value ǫ, e.g., ǫ = 10−8.

Moment matching: Another relevant issue for both methods is the reduction of the repre-
sentation of an inter-event process by means of the moment-matching methods introduced in
[7, 33, 34, 35, 37]. The reduction of the process always implies the reduction of the inter-event
time distribution by matching some of its moments with a distribution with smaller represen-
tation (if the moments are attainable by the matching distribution). Some of these methods
provide closed-form formulas for the parameters of the matching distribution [33, 37], mak-
ing them well suited for iterative procedures as those presented in the next sections. The
other methods require more computational effort, but this is still negligible compared to the
computation of the moments themselves. This is due to the large number of phases in the
exact representation of the inter-event time distribution. The direct formulas to compute the
moments [27] have a time and memory complexity of O(C3

i m3
i ) and O(C2

i m2
i ), respectively.

However, the representation of the inter-event time distribution has a block-tridiagonal struc-
ture as the one shown in Equation (1). To exploit this structure we make use of the algorithm
introduced in [14] to compute the first two moments of the first-passage time distribution
to higher levels in a finite QBD, where level k corresponds to the set of states with k busy
servers: {(k, l), 1 ≤ l ≤ mi}. Using the generating function of the first-passage times de-
scribed in [14] it is possible to determine higher moments of this distribution to use them as
input for the moment-matching methods. Appendix A discusses why the inter-event times
used by the approximation methods in Sections 3 and 4 can be interpreted as first-passage
times to higher levels in a finite QBD. It also describes an algorithm based on [14] to compute
any number of moments of this distribution. This is particularly useful for the method in
Section 4, where the size of the arrival process at each station grows linearly with the number
of stations. The time and memory complexity of the algorithm to compute these moments
are thereby reduced to O(Cim

3
i ) and O(Cim

2
i ), respectively.

Arrival process: To characterize the arrival process at each station, the overflow coming
from the previous station and the new arrivals must be combined. Under the assumption of
Poisson arrivals, the new incoming jobs at station s and the overflow from station i can be
combined as an MMAP[N] with parameters

Ds
0 = D̄i

0 − λsI, Ds
j = D̄i

j , j = 1, . . . , N, j 6= s, Ds
s = λsI. (3)

It will become clear that the approximation introduced in Section 3 can deal not only with
Poisson arrivals, but with more general point processes as well. Let the arrivals at station s
be described by a Markovian Arrival Process (MAP) characterized by {Bs

0, B
s
1} [27, 29]. A

MAP process is a point process that can represent general correlated inter-arrival times. It
can be seen as a special case of the MMAP[N] process with a single arrival type. Assuming
this arrival process, the combined stream at station s can be represented as an MMAP[N]
with parameters

Ds
0 = D̄i

0 ⊕Bs
0, Ds

j = D̄i
j ⊗ I, j = 1, . . . , N, j 6= s, Ds

s = I ⊗Bs
1,

where ⊗ and ⊕ stand for Kronecker product and sum [5], respectively. Even though the
second approximation (Section 4) can in principle include this more general process, the size
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of the representation of the arrival process increases exponentially with the dimension of the
MAP at each station. For the technique in Section 3, we do not encounter such an exponential
increase.

3 An approximation based on inter-overflow times

The approximation introduced in this section is based on reducing the size of the representa-
tion of the inter-overflow time process. As explained above, the size of the exact representation
of this process is extremely large, making the analysis of even small networks infeasible. Here
we introduce different methods to determine a reduced approximate representation of the
overflow process. We first consider the case where the overflow process is approximated by a
renewal process, assuming independent inter-overflow times. Next we allow the new process to
be non-renewal by including information about the joint moments of successive inter-overflow
times.

3.1 Renewal Approximation

3.1.1 3-moment match

When matching the inter-overflow time distribution, we make use of Phase-Type (PH) dis-
tributions [27, 32]. A PH distribution is defined as the absorption time in a CTMC with one
transient class and one absorbing state. Let S be the sub-generator of the transient class,
and let s = −S1 be the column vector of absorption rates at the transient states. The initial
probability vector b of the chain can be partitioned as b = [τ0 τ ], with τ0 = 1 − τ1 being
the probability that the process starts in the absorbing state. Therefore a PH distribution is
completely characterized by the parameters (τ , S). From Equation (2) it is clear that Ei

0 is
the sub-generator of the PH representation of the inter-overflow times at site i. To represent
the overflow process with a PH renewal process, we consider the stationary version of the
inter-overflow times, with representation given by (γi, E

i
0). To define γi we first need the

steady state probability vector of Qi, i.e., the vector πi such that πiQi = 0 and πi1 = 1.
This vector can be partitioned as πi = [πi

0, π
i
1, . . . ,π

i
Ci

], where πi
j corresponds to the states

with j busy servers in station i, for j = 0, . . . , Ci. Hence the steady state distribution of the
phase of the arrival process after an overflow is given by

βi =
πi

Ci
Di

+

πi
Ci

Di
+1

. (4)

By partitioning γi in the same way as πi and using the fact that overflows can only occur
when the system is full, we obtain that

γi = [0, . . . ,0, βi].

Given the large number of phases in (γi, E
i
0), we consider moment-matching algorithms to

obtain a PH representation with fewer phases. In particular, we make use of the algorithms
described in [7, 33] to match the first three moments with an acyclic PH distribution with
minimal number of phases. In particular, when the squared coefficient of variation (SCV) of
the inter-overflow time distribution is greater than or equal to 1

2 , the resulting PH distribution
has only two phases. If the SCV is greater than one, the method given in [37] can also be
used to get a 3-parameter hyper-exponential representation, which is a particular case of the
PH class with two phases. For the specific case of the inter-overflow time distribution, we
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found that the SCV was always above one in our experiments. This is closely related to
the high variability inherent in an overflow process where the jobs are only overflowed in a
small set of the state space. Additionally, we observed that the two-phase representation was
able to capture the third moment of the inter-overflow distribution in the numerical instances
considered in Section 5, as well as in many other cases not presented here. However, this
is not the case in general, since the set of moments to match {ni, 1 ≤ i ≤ 3} have to fulfill
the following condition: if n1 > 0 and the SCV is greater than 1, the third moment can
be represented by an acyclic PH distribution [33] or a hyper-exponential distribution [37],
both with two phases, if and only if 3n2

2 ≤ 2n1n3. In case the set of moments cannot be
represented by a PH distribution of order two, the method in [7] determines the minimum
number of phases required to do it with an acyclic PH distribution.

Let (αi, Ai) be the parameters of the reduced PH distribution obtained from the moment-
matching method applied to the PH(γi, Ei

0) representation of the stationary inter-overflow
time distribution at station i. In this reduced representation the off-diagonal elements of
the matrix Ai describe transition rates without arrivals, while the transition rates related to
arrivals are included in the matrix −Ai1αi. Therefore, the matrices {D̄i

0, D̄
i
1, . . . , D̄

i
N} can

be approximated as

D̄i
0 = Ai, D̄i

j = −Ai1αi

πi
Ci

Di
j1

πi
Ci

(

Di
+ −Di

s

)

1
, j = 1, . . . , N, j 6= s, (5)

and D̄i
s = 0. For j /∈ {0, s} the approximate D̄i

j is the product of the matrix of transition rates
involving an overflow of any type and the probability that a particular overflow is of type j.
When the overflowing job is coming from the station s (right after site i), it is dropped and
none of those jobs are actually part of the overflow process. This reduction will be labeled
PH(3) in the results, making explicit that it relies on a PH representation that matches the
first three moments of the inter-overflow time distribution.

3.1.2 Matching higher moments

In order to analyze the effect of capturing more moments of the inter-overflow time distribution
we rely on the class of Matrix-Exponential (ME) distributions. An ME random variable has
a density function given by f(x) = αeSxs, for x ≥ 0. Here α is a 1×m vector, S is a square
matrix of size m, and s is an m×1 vector (m is called the order of the representation) [6]. An
ME representation can always be chosen such that s = −S1 and α1 = 1 [1, 4]. Therefore, an
ME distribution, as in the PH case, is characterized by the tuple (α, S), but the parameters
are less restricted than in the PH class. More specifically, the matrix S must be invertible
and the density must be non-negative and integrate to 1. Even though the entries of α and
S can be complex numbers, the ME class is equally broad if they are restricted to be real
[3]. Therefore, the ME class can be seen as a generalization of the PH class, since the tuple
(α, S) must satisfy some extra conditions to be a representation of a PH distribution: α

must be non-negative and sub-stochastic, while S must be the sub-generator of a CTMC, as
explained before. A discussion and further properties of ME distributions can be found in
[1, 2, 3, 13, 17, 28].

As shown in [4], the traditional analysis of QBD processes can be extended to admit more
general components, e.g., allowing ME instead of PH distributions. Therefore, we can extend
the analysis of each site to allow for arrivals coming from a marked Rational Arrival Process
(MRAP[N]) with parameters {Di

0, D
i
1, . . . , D

i
N}, as a generalization of the MMAP[N] [23].

These matrices have real-valued entries, their sum Di =
∑N

j=0 Di
j must satisfy Di1 = 0 and
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the real part of the dominant eigenvalue of Di
0 (resp. Di) must be negative (resp. equal to

zero). In this case the stationary inter-overflow time distribution has an ME representation
given by (γi, Ei

0) as defined above. This result relies on the fact that the time between
successive overflows can be represented as the time until absorption in a finite-state semi-
Markov process with ME holding times, which is itself ME distributed [3]. In this case Ei

0 is
a real matrix with negative dominant eigenvalue and the vector γi is no longer a probability
mass function, but a vector of weights of measures after an overflow [2, 4].

Relying on the ME class we can use the method proposed in [34, 35] to reduce the order
of the representation (γi, Ei

0) by matching 2n− 1 moments with an ME distribution of order
n. This method is based on the algorithm for the partial realization problem proposed in [15].
Using the resulting representation and Equation (5), we get a smaller set of parameters to
approximately represent the overflow process, matching not only three, but 2n− 1 moments
of the stationary inter-overflow time distribution. The results based on an ME representation
of order n will be labeled ME(2n − 1). Nevertheless, the algorithm in [35] does not assure
that the kernel matrix obtained from a set of moments defines a distribution function, i.e., the
function has the required moments, but it may be negative. To the best of our knowledge, a
characterization of the moments representable by an ME distribution of arbitrary order is not
available. To make use of these distributions we evaluate the density function at several points
to numerically verify if it is non-negative. This test is done for every reduced representation
(αi, Ai) obtained from the matching algorithms.

From the description above it is clear that the size of the reduced ME representation can
be defined a priori according to the number of moments to match. Another approach is to
rely on the characterization of the minimal order of an ME distribution given in [17]. There
the authors propose the use of a set of Hankel matrices to determine the minimal order of an
ME distribution. One of the Hankel matrices is built from the moments of the distribution
and its rank determines the minimal order of an ME distribution with the specified moments.
If the minimal order is found to be n, then 2n−1 moments can be used as input for the method
in [34, 35] to obtain an ME representation of the stationary inter-overflow time distribution.
With this method the size of the ME representation could be made variable, however, the
minimum order could be large, making the analysis of the next station a lengthy process.
Nevertheless, determining the minimal order in advance is useful to avoid the computation
of a redundant amount of moments when using the moment-matching method in [35], since
the method returns an ME representation of order n as long as n is smaller than or equal to
the minimal order.

3.2 Non-Renewal Approximation

The approximation defined above matches a predefined number of moments of the stationary
inter-overflow time distribution. Nevertheless, we can also include information related to the
joint moments of consecutive inter-overflow times by means of a Rational Arrival Process
(RAP) with parameters {H i

0, H
i
1} using the approach proposed in [34]. In this process the

inter-event times are ME distributed, the matrix H i
0 describes the evolution of the process

between events and H i
1 contains the arrival intensities. In the method of [34] the inter-overflow

times are first approximated with an ME distribution using the algorithm in [35], as described
above. Based on that result and the joint moments of the inter-overflow times, the method
computes the matrices {H i

0, H
i
1} that describe the reduced RAP. If the reduced process is

of order n, it not only matches 2n − 1 moments of the inter-overflow time distribution, but
also (n − 1)2 joint moments of successive inter-overflow times. These matrices are used to
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approximate the overflow process as

D̄i
0 = H i

0, D̄i
j = H i

1

πi
Ci

Di
j1

πi
Ci

(

Di
+ −Di

s

)

1
, j = 1, . . . , N, j 6= s,

and D̄i
s = 0. The results obtained using a reduced RAP representation of order n are labeled

RAP(2n− 1).
A further step consists of using the method in [23] to directly approximate the matrices

{D̄i
0, D̄

i
1, . . . , D̄

i
N} as the parameters of an MRAP[N]. To do so the inter-overflow time is again

approximated by an ME distribution. However, in this case the description includes the joint
moments of successive inter-overflow times for each type of arrival. This makes the method
able to determine not just a matrix H i

1 describing the arrival intensities of any type, but a
set of matrices {H i

1, . . . , H
i
N} with the intensities for each type of arrival. These matrices,

together with H i
0, completely determine the approximate overflow process that is fed to the

next station in the ring, i.e., D̄i
j = H i

j , j = 0, 1, . . . , N , where H i
s = 0 by construction. The

label MRAP(2n− 1) will be used to refer to the results obtained with an order-n MRAP[N]
representation. Notice that the two methods discussed in this section rely on the algorithm
in [35] to compute an approximate ME representation of the inter-overflow time distribution.
Therefore, the density function of this ME representation is evaluated at several points to
test its non-negativity, in a similar way as with the ME renewal approximation.

Before turning to the second approximation method, it is important to emphasize that in
this method the size of the reduced representation of the overflow process does not depend
on the size of the arrival process representation. Actually, it only depends on the number
of moments and joint moments of the inter-overflow time process to match. Therefore, this
method can be used when the arrival of new jobs at each station is described by a MAP,
as explained in Section 2.1, since this generalization has no effect on the size of the overflow
representation.

4 ON-OFF approximation

This approximation aims at capturing the behavior of those periods where station i is not
generating overflow jobs (OFF periods) and those where arriving jobs are sent to the next
station in the ring (ON periods) separately. Furthermore, the reduction process is split into
two steps: a first related to the reduction of the OFF period representation and a second to
the reduction of the ON period representation. The first time each station is analyzed only
the OFF period representation will be reduced. Thus, after analyzing all the stations once,
the overflow process will include jobs from all the stations and those coming from the first
station must be dropped. To eliminate those jobs we reduce the ON period representation
by lumping the states related to the first station, i.e., the station generating the jobs that
need to be eliminated. Hereafter the analysis of each station first reduces the representation
of its OFF period, and then eliminates the jobs that must be dropped by reducing the ON
period representation. The overflow process is again represented by an MMAP[N]. The first
step computes the matrices {D̂i

0, D̂
i
1, . . . , D̂

i
N} of an MMAP[N] that still includes the jobs that

must be dropped. The result of the second step is the set of matrices {D̄i
0, D̄

i
1, . . . , D̄

i
N} which

characterizes the approximating overflow process. The size of the approximate process grows
the first time each station is analyzed, but remains fixed in the subsequent iterations. In fact,
if the external arrivals at each station follow a Poisson process, the size of the approximated
process depends linearly on the number of stations. Assuming a more general process would
cause the size of the approximated process to grow exponentially, making it intractable except
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for very small networks. Therefore, in the exposition to follow we assume that new incoming
jobs at each station arrive according to a Poisson process.

To describe the behavior of the system during the OFF periods we consider, from the
process with generator (1), those states where there is at least one idle server. The transient
generator of these states is given by

Ei
OFF =



















Di
0 Di

+ 0 . . . 0 0
µiI Di

0 − µiI Di
+ . . . 0 0

0 2µiI Di
0 − 2µiI . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . Di
0 − (Ci − 2)µiI Di

+

0 0 0 . . . (Ci − 1)µiI Di
0 − (Ci − 1)µiI



















. (6)

Since in steady state all the servers are busy with probability vector πi
Ci

, the distribution of
the arrival phase after a service completion that causes the system to make a transition from
the states {(Ci, l), 1 ≤ l ≤ mi} to the states {(Ci − 1, l), 1 ≤ l ≤ mi} is given by

ηi =
πi

Ci
CiµiI

πi
Ci

CiµiI1
=

πi
Ci

πi
Ci

1
. (7)

Thus, the stationary distribution of the duration of an OFF period can be described as a PH
distribution with parameters (δi, Ei

OFF), where

δi =
[

0 · · · 0 ηi
]

.

Since the size of this representation is miCi, we can reduce it using the methods in
[7, 33, 37] to match the first three moments of the OFF period length distribution, in the
same manner as described in Section 3.1.1 for the inter-overflow time distribution. Let (αi, Ai)
be the reduced PH representation of the duration of the OFF period in station i, then αi

j is the

probability of starting an OFF period in phase j and ai = −Ai1 is the rate at which an ON
period starts in each phase of the OFF period representation. In addition, higher moments
can be captured using an ME representation as illustrated in Section 3.1.2 for the inter-
overflow time distribution. The results obtained with an approximation based on matching
n moments of the OFF period length distribution will be labeled ON-OFF(n). However, in
the remainder of this section we assume a PH representation as its interpretation is more
intuitive.

On the other hand, because of the exponential service times, the duration of an ON period
is exponentially distributed with rate Ciµi. Furthermore, the stationary distribution of the
arrival phase when an ON periods begins is given by

ωi =
πi

Ci−1D+

πi
Ci−1D+1

,

where πi
Ci−1 is the stationary probability vector of having Ci − 1 busy servers in station i.

Using this description we can connect the OFF and ON periods in a single MMAP[N] process
with parameters {D̂i

0, D̂
i
1, . . . , D̂

i
N} given by

D̂i
0 =

[

Ai aiωi

Ciµi1αi Di
0 − CiµiI

]

, D̂i
j =

[

0 0

0 Di
j

]

, j = 1, . . . , N. (8)
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The structure of the matrices {D̂i
j , 1 ≤ j ≤ N} clearly shows that the description of the ON

period remains unchanged. In contrast, the matrix D̂i
0 contains the reduced representation of

the OFF period. The reduced process resides in the OFF states according to matrix Ai, from
which it can move to the ON states with rates ai and select a state in this set according to the
vector ωi. The transitions within the ON states are described by the matrices {Di

j , 1 ≤ j ≤ N}

when an arrival is associated with the transition, and by the matrix Di
0 when no arrivals are

generated by the transition. Finally, the process may move from any of the ON states to the
OFF set with rate Ciµi. When this happens, a new OFF state is selected according to the
vector αi.

Let ni be the order of the representation (αi, Ai). Then, after analyzing station 1 for the
first time (considering its own external Poisson traffic only), the approximate representation
of the overflow process at this station is of size n1 + 1. This process is combined with the
Poisson process arriving at station 2 and, after reducing the OFF period representation at
this station, the overflow process fed to station 3 is of order n2 +n1 +1. Therefore, the size of
the overflow process from station N to station 1 is

∑N
k=1 nk + 1. Notice, the overflow process

is built such that the first nN states describe the OFF period in which no jobs are sent to
station 1. In the next nN−1 states, the site only overflows jobs of type N since these states
correspond to the case where the station N faces an ON period while the station N−1 resides
in an OFF period. Accordingly, in the next nN−2 states both jobs of type N and N − 1 are
overflowing, and from this set of states the process can move to the first set of nN states or to
the second set of nN−1 (as well as to other states). As a result, the overflow process captures
the actual behavior of the ring network where, for a type N − 1 job to be sent to station 1,
both stations N and N − 1 have to be in their ON periods. Furthermore, if the site N moves
to the OFF set, both jobs of type N and N − 1 stop overflowing to station 1.

To illustrate the transitions in the overflow process we consider a simple network made
of three nodes. The approximate overflow process at the first station is characterized by the
size-(n1 + 1) matrices

D̂1
0 =

[

A1 a1

C1µ1α
1 −(λ1 + C1µ1)

]

, D̂1
1 =

[

0 0

0 λ1

]

, D̂1
2 = D̂1

3 = 0.

Notice, the vector ω1 is not included explicitly in the definition of D̂1
0 since in this case the

ON period is described by one state which is selected with probability one when a new ON
period starts. At station two the arrival process is built by superposing the newly-generated
and the overflow jobs, as shown in Equation (3). After reducing the OFF period in this
station, the matrices that characterize the overflow process from station two to station three
are

D̂2
0 =













A2 a2ω2

C2µ21α2
A1 − (λ2 + C2µ2)I a1

C1µ1α
1 −

2
∑

j=1
(λj + Cjµj)













,

D̂2
1 =







0 0

0
0 0

0 λ1






, D̂2

2 =







0 0

0
λ2I 0

0 λ2






, D̂2

3 = 0.
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Finally, the reduction of the OFF period representation is applied to station three, which
results in an overflow process described by an MMAP[3] of size n3 +n2 +n1 +1 with matrices

D̂3
0 =















A3 a3ω3

C3µ31α3

A2 − (λ3 + C3µ3)I a2ω2

C2µ21α2
A1 −

∑3
j=2(λj + Cjµj)I a1

C1µ1α
1 −

∑3
j=1(λj + Cjµj)















,

D̂3
1 =













0 0

0

0 0

0
0 0

0 λ1













, D̂3
2 =













0 0

0

0 0

0
λ2I 0

0 λ2













, D̂3
3 =













0 0

0

λ3I 0

0
λ3I 0

0 λ3













.

The matrix D̂3
0 shows how the process can move from an OFF state to any of the ON states,

even those where jobs of all types are generated. It also reveals how the service rate Ciµi

determines the transition rates from the states where station i is in an ON period to those
where it enters an OFF period. It is clear that the last state is the only one where jobs of every
type are generated, including those coming from the first station, which must be dropped.
Also, the last n1 + 1 states describe the ON period of station two, where jobs of type two
are generated. This fact suggests that the overflow process may be reduced by combining the
last n1 + 1 states into one single state describing the ON period of station two.

In general, after analyzing all the stations once, the overflow process at station N still
includes jobs of type one. Since the relevant streams for this overflow process are those of
type {2, . . . , N}, the process could be reduced to have

∑N
k=2 nk + 1 states, where the last

n2 + 1 states describe the OFF and ON periods of station two. Specifically, to reduce the
representation of the overflow process and to eliminate the type-1 jobs, we consider lumping
the last n1 +1 states. From [8], a CTMC is strongly lumpable with respect to some partition
if, for every pair of sets A and B in the partition, the sum of the transition rates from a
state in A to the states in B is the same for every state in A. In fact, if we define the set A1

containing the last n1 +1 states of the process, and the partition E = {1, 2, . . . ,
∑N

k=2 nk,A1},
then the underlying chain of the overflow process is strongly lumpable with respect to E . This
can be easily seen in the construction of the overflow process. The transitions from and to the
set A1 are contained only in the matrix D̂0, as can be seen from Equation (8). Since only the
last n1 + 1 states are lumped, the required condition for strong lumpability is automatically
met for all the single-state sets in the partition. To see that the transition rates from any
state s ∈ A1 to any state t /∈ A1 are the same for every element in A1, define Ai as the
set of states {

∑N
k=i+1 nk + 1, . . . ,

∑N
k=i nk}, i.e., the set of states describing the OFF period

of station i, for 2 ≤ i ≤ N . Then the transitions from A1 to Ai occur with rates Ciµi1αi,
for 2 ≤ i ≤ N , which do not depend on the specific state in A1. Thus, it is clear that the
transition rates from any state s ∈ A1 to t /∈ A1 are the same for all s ∈ A1. Clearly, this
argument applies when the reduced representation of the OFF period is a PH distribution,
as in this case the underlying process is a CTMC. When the reduced representation is an ME
distribution this result no longer applies and we are not aware of a similar result involving
this more general process. However, we apply the same reduction of the ON period, lumping
the last n1 + 1 states of the process, to eliminate the type-1 jobs from the overflow process at
station N . This implies an additional approximation, but the results in Section 5 show that
matching more moments, using ME distributions, improve the performance of the ON-OFF
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approximation.
Lumping the state space of the underlying CTMC (or the more general process based

on ME distributions) of the overflow process is the key step to reduce the representation
of the ON period and to determine the matrices {D̄N

0 , D̄N
1 , . . . , D̄N

N } from the matrices

{D̂N
0 , D̂N

1 , . . . , D̂N
N }. Let D̂N

0 (Aj ,Ak) be the transition rates from the set Aj to the set
Ak without arrivals. Also, let A′

1 be the unitary set containing the last state of the overflow
process created by lumping the states in A1. Then, the sub-generator matrix of the overflow
process at station N , partitioned according to {AN , . . . ,A2,A

′
1}, is given by

D̄N
0 =





















D̂N
0 (AN ,AN ) D̂N

0 (AN ,AN−1) · · · D̂N
0 (AN ,A2) D̂N

0 (AN ,A1)1

D̂N
0 (AN−1,AN ) D̂N

0 (AN−1,AN−1) · · · D̂N
0 (AN−1,A2) D̂N

0 (AN−1,A1)1
...

...
. . .

...
...

D̂N
0 (A2,AN ) D̂N

0 (A2,AN−1) · · · D̂N
0 (A2,A2) D̂N

0 (A2,A1)1

CNµNαN CN−1µN−1α
N−1 · · · C2µ2α

2 −
∑N

k=2 (Ciµi + λi)





















.

We now partition the state space into two sets, one including the first
∑N

k=2 nk states and
the other being A′

1. With this partition, the matrices {D̄N
1 , . . . , D̄N

N } can be expressed as

D̄N
1 = 0, D̄N

j =

[

• 0
0 λi

]

, j = 2, . . . , N,

where • denotes the transitions in D̂N
j from {AN , . . . ,A2} to itself. This step concludes the

reduction of the overflow representation related to the ON period. Furthermore, this reduction
must be repeated at each station from the second iteration onwards, since for the first iteration
the reduction is only related to the OFF period. Thus, during any future iteration, the
representation of the overflow process that arrives at station i is of order

∑N
k=1,k 6=i nk + 1.

Given that it is usually possible to match the first three moments of the OFF periods in
each station with a PH distribution of order 2, the size of the overflow process representation is
2N−1, which increases linearly with the number of stations. In contrast to the approximation
proposed in Section 3, the ON-OFF method is not able to efficiently include more general
arrival processes at the stations because the size of the arrival process representation at each
station would increase exponentially.

5 Performance Results and Comparisons

In this section we evaluate the performance of the approximations introduced in this paper
by comparing their results against those obtained by simulation, for different values of the
network parameters. We consider different values for the overall load, the number of sites in
the network, the number of servers per site, and the squared coefficient of variation (SCV) of
the arrival process at each site. The results of the approximations presented in Section 3 are
labeled depending on the specific representation of the inter-overflow time process, which can
be a PH or ME distribution, a RAP or a marked RAP (MRAP). In each case the number of
matched moments of the inter-overflow time distribution is made explicit, e.g., ME(n) refers
to an approximation based on an ME representation matching n moments. The results of the
approximation introduced in Section 4 are labeled ON-OFF(n) when n moments of the OFF
period length distribution are matched.

The main performance measures are the number of newly-generated jobs processed locally
per unit of time (local rate), and the total traffic rate transmitted from one site to another
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(link traffic). These measures have been chosen as they are of particular relevance when
dimensioning the optical grid resources [10, 12]. Since these measures may be different for each
station in the network, we present the maximum relative error found when comparing them
against the simulation results. The widths of the 95% confidence intervals of the estimates
obtained from simulation (computed with the batch means method) are always less than one
percent of the respective mean. All the network configurations considered here are assumed
to have an overall load between 75% and 95%. The load at each site is randomly chosen
within the range [x − 5%, x + 5%], where x is the overall load of the network. This setup
is in line with the design of Grid networks, where one aims for loads between 80% and 90%
at each site. In prior studies the number of sites ranges from less than ten to hundred, with
typical values between twenty and fifty [9, 10, 11, 12]. Also, typical values for the number of
servers per site are between twenty and fifty, although in some cases it can be larger than one
hundred. We consider networks with 10, 20, and 40 stations, each having the same number
of servers (20 or 40).

We start with a network made of ten nodes with 20 and 40 servers per station. The relative
errors in the approximation of the local rate and link traffic are included in Tables 1 and 2,
respectively. The approximate local rates are very close to those obtained with simulation,
particularly for loads up to 90%. When the load is higher the approximations that also
match the joint moments of successive inter-overflow times perform significantly better than
those based on renewal processes. The ON-OFF method shows a competitive performance,
with similar results to those of the other methods for loads under 90%, but better behavior
for higher loads. Additionally, all the methods perform better when the number of servers
increases from 20 to 40, especially for high loads. In relation to the link traffic (Table 2),
the errors in the approximations are clearly larger than for the local rate. Although for loads
from 75% to 85% the errors grow with the load, this is no longer the case if the load is further
increased. Similarly, for the same range of loads, the errors are smaller for the system with
40 servers per station than for the one with 20. Again, this behavior does not hold for higher
loads. For loads up to 85% the methods provide a reasonable approximation, especially the
ones based on the RAP and RAPK representation of the overflow process.

Load 0.75 0.80 0.85 0.90 0.95

# Servers 20 40 20 40 20 40 20 40 20 40

PH(3) 0.10 0.02 0.19 0.07 0.20 0.22 3.02 0.34 14.59 7.69

ME(5) 0.05 0.03 0.15 0.03 0.13 0.14 2.51 0.25 12.49 6.70

RAP(5) 0.03 0.03 0.09 0.03 0.19 0.09 2.91 0.22 12.15 7.21

RAPK(5) 0.03 0.03 0.09 0.03 0.19 0.09 2.83 0.22 11.34 7.04

ON-OFF(3) 0.11 0.02 0.29 0.08 0.45 0.29 1.64 0.67 9.66 5.01

Table 1: Maximum relative error (%) in local rate for N = 10 and C = {20, 40}

We now turn to the analysis of larger systems that consist of 20 and 40 stations, each with
40 servers. The approximation errors for the local rate are included in Table 3, while those
for the link traffic are in Table 4. In this case we provide the results for an increasing number
of matched moments of the distribution of both the inter-overflow time and the OFF period
length. The results labeled RAP(K) correspond to both RAP and RAPK representations since
both have very similar results. This similarity was also apparent in Tables 1 and 2, as well
as in many other scenarios not presented here. The approximation of the local rate is again
very close to the estimates obtained by simulation, with improved results when compared to
the smaller network. In general, the error in approximating the local rate diminishes with
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Load 0.75 0.80 0.85 0.90 0.95

# Servers 20 40 20 40 20 40 20 40 20 40

PH(3) -7.96 -3.74 -12.57 -7.30 -17.94 -13.76 -15.53 -25.39 10.62 -6.93

ME(5) -3.94 -0.96 -8.26 -3.26 -13.47 -8.80 -10.51 -19.64 12.63 -1.70

RAP(5) -3.06 -0.88 -6.87 -2.75 -11.23 -7.71 -6.29 -17.32 16.59 3.47

RAPK(5) -3.06 -0.88 -6.87 -2.75 -11.25 -7.71 -6.68 -17.33 13.44 2.79

ON-OFF(3) -5.17 -2.06 -9.58 -4.99 -14.91 -10.88 -13.24 -22.04 4.57 -6.60

Table 2: Maximum relative error (%) in link traffic for N = 10 and C = {20, 40}

the inclusion of higher moments, with the exception of high loads for the system with 40
stations. On the other hand, the errors in the link traffic approximation decrease consistently
when matching more moments. This effect is more evident for the methods based on the
inter-overflow time process than for the ON-OFF method. For all the methods, the accuracy
of the approximations improves drastically when matching five instead of three moments, and
the results are even better when matching up to seven moments, although the difference is
not as large as in the first case. It is important to note that the approximation methods fail
to include more than seven moments because the algorithm in [35] returns a kernel matrix
that corresponds to a negative density. In many other cases we obtained a similar result when
trying to include nine or more moments.

Load 0.75 0.80 0.85 0.90 0.95

# Stations 20 40 20 40 20 40 20 40 20 40

3 0.06 0.06 0.07 0.11 0.18 0.19 0.74 0.66 2.40 1.02

ME 5 0.05 0.05 0.04 0.06 0.11 0.12 0.64 0.56 1.68 1.63

7 0.05 0.05 0.05 0.07 0.15 0.16 0.77 0.70 1.19 2.12

3 0.06 0.06 0.06 0.10 0.16 0.17 0.63 0.56 2.97 0.40

RAP(K) 5 0.05 0.05 0.04 0.05 0.06 0.08 0.43 0.35 2.47 0.73

7 0.05 0.05 0.04 0.05 0.10 0.11 0.56 0.49 1.86 1.32

3 0.06 0.06 0.09 0.11 0.25 0.25 1.05 0.98 0.46 2.84

ON-OFF 5 0.05 0.04 0.06 0.08 0.19 0.19 0.94 0.87 0.47 2.82

7 0.05 0.04 0.06 0.08 0.19 0.20 0.95 0.87 0.43 2.86

Table 3: Maximum relative error (%) in local rate for N = {20, 40} and C = 40

When comparing the ON-OFF approach with the inter-overflow time method it is clear
that neither outperforms the other. In particular, when the overall load is equal to 95% the
ON-OFF method has a better performance in approximating the local rate for the scenario
with 20 stations while it is worse for the one with 40 stations. For lower loads, both methods
show a similar performance, with a slightly smaller error for the ME and RAP(K) methods.
However, the link traffic results show a different behavior. As this measure includes a mixture
of all the traffic in the network, the errors accumulate causing larger discrepancies between the
approximate methods and the simulation results. These discrepancies tend to increase with
the size and the overall load of the network, as each link carries more types of jobs when any of
these parameters increases. In particular, the ON-OFF method shows a better performance
than the other methods when matching three moments of the corresponding inter-event time
distribution. When five moments are matched the RAP(K) method performs better than the
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ON-OFF, which now has similar errors than the ME approach. Finally, all the methods based
on the inter-overflow time process perform better than the ON-OFF approach when seven
moments are matched. This reveals that the inclusion of higher moments has a greater effect
on the methods based on the inter-overflow time process, and this effect is more apparent for
the non-renewal representations.

Load 0.75 0.80 0.85 0.90 0.95

# Stations 20 40 20 40 20 40 20 40 20 40

3 -5.64 -6.03 -9.38 -9.80 -12.24 -12.30 -24.44 -21.91 -30.35 -37.76

ME 5 -2.07 -2.57 -4.48 -4.92 -7.18 -7.24 -18.73 -16.01 -25.58 -33.50

7 -1.62 -2.12 -3.83 -4.28 -6.46 -6.53 -17.83 -15.08 -24.67 -32.69

3 -5.55 -5.92 -9.10 -9.53 -11.82 -11.88 -23.56 -21.00 -28.70 -36.29

RAP(K) 5 -1.86 -2.29 -3.79 -4.24 -6.09 -6.15 -16.41 -13.61 -21.28 -29.66

7 -1.37 -1.78 -2.98 -3.43 -5.10 -5.16 -14.93 -12.08 -19.29 -27.87

3 -3.59 -4.06 -6.54 -6.97 -9.30 -9.36 -21.04 -18.39 -27.30 -35.00

ON-OFF 5 -1.74 -2.26 -4.11 -4.55 -6.88 -6.94 -18.58 -15.85 -25.69 -33.55

7 -1.57 -2.10 -3.87 -4.32 -6.62 -6.68 -18.27 -15.53 -25.43 -33.30

Table 4: Maximum relative error (%) in link traffic for N = {20, 40} and C = 40

In relation to the computation times, the inter-overflow time method has a clear advantage
since the size of the approximate representation of the overflow process is independent of the
number of stations. In the ON-OFF method this size grows linearly with the number of
stations, which generates a proportional increase in the block size of the QBD that must be
solved at each station. The relevance of the block size for the computation times comes from
the fact that the time complexity of the algorithms to compute the stationary distribution and
the moments of the distribution of the first-passage times to higher levels of the QBD is cubic
in the block size. For the inter-overflow time method, the computation times were always
below one minute in the scenarios considered here. The load also affects the computation
times as more iterations are required for the traffic matrix to converge when the load is
higher. For the scenarios shown here, usually less than five iterations were enough when the
load was less than 80%, but this figure was between 20 and 30 when the load was 95%.

For the results considered thus far, the arrival process of newly-generated jobs at each
station is assumed to be Poisson. Even though this is a usual assumption in prior studies on
optical grid networks, more general processes can also be considered in order to capture the
high variability of the arrival process [9, 36]. As mentioned in Section 2, the method based
on the inter-overflow time distribution can be extended to allow for more general arrival
processes without experiencing an exponential increase in the size of the overflow process
representation. To consider the case of high variability in the arrival process, we assume that
each station receives newly-generated jobs coming from a hyper-exponential renewal process
with different arrival rates at each station, but the same SCV. Specifically, the cases where
the SCV is equal to 5 and 20 are analyzed for a network with 20 stations and 40 servers per
station. The approximation errors in local rate and traffic link are included in Tables 5 and
6, respectively. Again, the RAP and RAPK representations are presented together as their
results are very similar. The first clear result is that the increase in the SCV causes larger
errors in the approximation of both the local rate and the link traffic. Not only are the errors
for SCV equal to 20 larger than those for SCV equal to 5, but in both cases the approximation
is worse than under Poisson arrivals (Tables 3 and 4). With respect to the local rate, the
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effect of matching higher moments becomes more evident for larger SCV. The approximations
offer small errors for loads up to 90%, and for higher loads these are still below 10% (when
matching seven moments of the inter-overflow time distribution). The results for the ME(7)
approximation with an SCV equal to 20 are not included because the density function obtained
with the algorithm in [35] was negative. For the link traffic, the effect of matching higher
moments is evident, with a stronger effect for the non-renewal approximations. The errors
tend to increase with the load, except for a load of 95%.

Load 0.75 0.80 0.85 0.90 0.95

SCV 5 20 5 20 5 20 5 20 5 20

3 0.14 0.76 0.40 1.09 0.33 1.25 1.59 4.63 10.73 15.22

ME 5 0.09 0.34 0.17 0.62 0.33 0.37 0.66 3.28 9.27 13.25

7 0.14 0.59 0.28 1.11 0.59 1.21 0.59 0.94 8.24 -

3 0.16 0.80 0.42 1.17 0.42 1.39 1.82 4.90 11.42 15.77

RAP(K) 5 0.08 0.39 0.20 0.49 0.17 0.66 0.98 3.87 10.21 14.51

7 0.11 0.51 0.22 0.94 0.47 0.91 0.28 1.71 9.00 8.90

Table 5: Maximum relative error in local rate (%) for N = 20, C = 40 and SCV = {5, 20}

Load 0.75 0.80 0.85 0.90 0.95

SCV 5 20 5 20 5 20 5 20 5 20

3 -9.77 -20.91 -15.51 -29.90 -23.16 -38.03 -34.36 -42.86 -26.85 -34.42

ME 5 -5.79 -17.38 -10.46 -25.72 -17.87 -33.11 -28.87 -36.71 -20.77 -26.19

7 -5.08 -16.16 -9.48 -24.32 -16.77 -31.53 -27.59 -34.48 -19.21 -

3 -9.59 -20.69 -15.17 -29.61 -22.67 -37.67 -33.61 -42.41 -25.51 -32.62

RAP(K) 5 -5.28 -16.49 -9.48 -24.54 -16.49 -31.62 -26.71 -34.63 -16.74 -21.86

7 -4.39 -14.84 -8.17 -22.54 -14.88 -29.23 -24.60 -31.25 -13.59 -16.20

Table 6: Maximum relative error in link traffic (%) for N = 20, C = 40 and SCV = {5, 20}

From the instances analyzed here, and others not included, we have found that a larger
SCV of the arrival process and larger overall load deteriorate the approximation performance.
The number of servers has an opposite effect, i.e., the approximation errors are smaller when
the number of servers is larger. These observations are related to the impact that these
parameters have on the spill probability (the probability that a job is sent to a remote station
for service). Clearly, both the arrival process SCV and the load increase the spill probability,
while, under the same load, a larger number of servers reduces the spill probability as more
jobs can be handled locally. Figure 1 shows the errors in local rate and link traffic as a function
of the spill probability for two specific methods: ON-OFF(3) and RAP(7). There we observe
that the approximations behave better when the spill probability is small, typically under 0.3.
For a larger spill probability the approximation errors become more pronounced, especially
for the link traffic. Besides, in most of the cases the approximation methods underestimate
the actual link traffic. Thus, the results of these methods can be regarded as a practical lower
bound of the actual link traffic.
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Figure 1: Maximum relative errors in local rate and link traffic as a function of the spill
probability

A Computing the moments

A relevant issue for the approximation methods introduced in this paper is the computation
of the moments of an inter-event time distribution. The purpose of this appendix is to provide
an algorithm to compute these moments based on [14]. In both methods, the inter-event time
distribution has a PH or ME representation characterized by a matrix with a QBD structure.
For the method in Section 3, this matrix is shown in Equation (2), while for the ON-OFF
method it is given by Equation (6). In both cases the inter-event time distribution can be
seen as a first-passage time distribution to a higher level in a finite QBD (level k is the set of
states {(k, l), 1 ≤ l ≤ mi}). In the ON-OFF approximation the inter-event times correspond
to the length of the OFF periods. An OFF period starts when the system moves from level
Ci to level Ci−1, where the initial phase in level Ci−1 is selected according to ηi, as defined
in Equation (7). The OFF period ends as soon as the process reaches level Ci again, i.e., the
first time it visits level Ci starting from level Ci − 1. A similar observation can be made for
the approximation based on the overflow process. Since an overflow can only occur when the
system is in level Ci, an inter-overflow time always starts in this level. In this case, however,
there is no higher level than Ci, but we can define a fictitious level Ci + 1 of absorbing states
that can only be accessed from level Ci with rates Di

+ − Di
s. Then, the inter-overflow time

can be seen as the first-passage time from level Ci to level Ci + 1, where the vector βi in
Equation (4) defines the initial phase in level Ci.

As both inter-event time distributions can be regarded as first-passage times to higher
levels in a finite QBD, we can use the results in [14] to compute the moments of these
distributions. In [14] the authors determine the generating function of the first-passage times
to higher levels in a finite level-dependent QBD. Based on this, they derive an algorithm to
compute the first two moments, but any higher moment can be computed from the generating
function in a similar manner. Here we focus on the computation of N moments of the
OFF-period length distribution, but this can be easily modified for the inter-overflow time
distribution. Algorithm 1 presents the steps to compute these moments in an arbitrary
station, dropping the super(sub)script i. For a better understanding of the algorithm we
introduce a few definitions. As described in Section 2, the state of a station can be represented
by the process {(N(t), J(t)), t ≥ 0} on the state space {(k, l), 0 ≤ k ≤ C, 1 ≤ l ≤ m}.
Now let Xn be the first-passage time from level n − 1 to level n, for n = 1, . . . , C, i.e.,
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Xn = inf{t > 0 : N(t) = n|N(0) = n − 1}. Therefore, the length of the OFF-period is given

by XC . Let U
(k)
n be the m×m matrix with entries

[U (k)
n ]ij = E[Xk

n, J(Xn) = j|N(0) = n− 1, J(0) = i],

i.e, the k-th moment of the first-passage time from level n − 1 to level n, when the process
starts in phase i and the first visit to level n occurs in phase j, for 1 ≤ n ≤ C, 1 ≤ i, j ≤ m

and k ≥ 1. Also, let u
(k)
n be the m× 1 vector with entries

[u(k)
n ]i = E[Xk

n|N(0) = n− 1, J(0) = i],

i.e, the k-th moment of the first-passage time from level n−1 to level n, given that the process
starts in phase i. Finally, let rk be the k-th moment of the first-passage time distribution
from level C − 1 to level C, i.e.,

rk = E[Xk
C |N(0) = C − 1] = ηu

(k)
C ,

where η is the probability distribution of the initial phase in level C−1. Algorithm 1 computes
rk, for 1 ≤ k ≤ N . The procedure starts by computing the moments of the first-passage times

from level 0 to level 1, resulting in the vectors u
(k)
1 . The algorithm then computes the same

quantities for levels 2 to C. To obtain the N vectors {u
(k)
n , 1 ≤ k ≤ N} at each step, the

algorithm requires the N − 1 matrices {U
(k)
n , 1 ≤ k ≤ N − 1} and the matrix Kn. The matrix

−K−1
n is the generator of the process restricted to level n − 1 before the first visit to level

n. Additionally, the N − 1 auxiliary matrices {T
(k)
n , 1 ≤ k ≤ N − 1} are used to simplify the

expressions.
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Algorithm 1 Algorithm to compute N moments of the OFF period length distribution

K1 ← −D−1
0

u
(1)
1 ← K11

for i = 2 to N do

u
(i)
1 ← iK1u

(i−1)
1

end for

U
(1)
1 ← K2

1D+

for i = 2 to N − 1 do

U
(i)
1 ← iK1U

(i−1)
1

end for

for n = 2 to C do

Kn ← − (D0 − (n− 1)µI + (n− 1)µKn−1D+)−1

T
(1)
n ← Kn

(

I + (n− 1)µU
(1)
n−1

)

for i = 2 to N − 1 do

T
(i)
n ← (n− 1)µKnU

(i)
n−1

end for

u
(1)
n ← Kn

(

1 + (n− 1)µu
(1)
n−1

)

for i = 2 to N do

u
(i)
n ← (n− 1)µKnu

(i)
n−1 +

∑i−1
j=1

(

i
j

)

T
(i−j)
n u

(j)
n

end for

for i = 1 to N − 1 do

U
(i)
n ← T

(i)
n KnD+ +

∑i−1
j=1

(

i
j

)

T
(i−j)
n U

(j)
n

end for

end for

for k = 1 to N do

rk ← ηu
(k)
C

end for
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