
Exploiting restricted transitions in

Quasi-Birth-and-Death processes

Juan F. Pérez and Benny Van Houdt

Performance Analysis of Telecommunication Systems Research Group

Department of Mathematics and Computer Science

University of Antwerp - IBBT

Middelheimlaan 1, B-2020 Antwerp, Belgium

Email:{juanfernando.perez, benny.vanhoudt}@ua.ac.be

Abstract—In this paper we consider Quasi-Birth-and-Death
(QBD) processes where the upward (resp. downward) transitions
are restricted to occur only from (resp. to) a subset of the phase
space. This property is exploited to reduce the computation time
to find the matrix R or G of the process. The reduction is done
through the definition of a censored process which can be of
the M/G/1- or GI/M/1-type. The approach is illustrated through
examples that show the applicability and benefits of making
use of the additional structure. The examples also show how
these special structures arise naturally in the analysis of queuing
systems. Even more substantial gains can be realized when we
further restrict the class of QBD processes under consideration.

I. INTRODUCTION

Quasi-Birth-and-Death (QBD) processes are a generaliza-

tion of simple birth-and-death processes where the addition of

a second dimension, called the phase, allows the representation

of more general systems. The second dimension typically

describes a random environment or the state of the arrival

and service processes in the case of queueing systems. QBD

Markov chains (MCs) were introduced in [1] and studied in

[2] as part of the more general class of GI/M/1-type MCs. The

main feature of a QBD process is that its stationary probability

vector, if it exists, has a matrix-geometric form, such that it

can be expressed as function of a boundary probability vector

and a rate matrix R. Many algorithms have been proposed

for finding this matrix [2], [3], [4], which is the minimal

nonnegative solution of a quadratic matrix equation.

In many cases the state space of the second dimension may

be large enough to require long computation times to find

the matrix R, even when relying on quadratically convergent

algorithms such as Logarithmic Reduction [3] and Cyclic

Reduction [4]. Provided that the matrices characterizing the

QBD MC have a certain structure, Grassmann and Tavakoli

[5] show how these computation times can be reduced. In

particular, they considered the case where upward transitions

can only occur in a certain subset of the phase space, using the

resulting structure to accelerate the time per iteration of the

linearly-convergent U-based method [6]. Their approach can

also take into account the case where the downward transition

can lead only to a subset of the phase space. In this paper

we consider the same case as in [5], restricting the upward

(resp. downward) transitions to occur only from (resp. to) a

subset of the phase space, called S+. However, our approach

differs from [5] in that we define a new process by observing

the QBD MC only when the phase variable is in the set S+.

The resulting processes are of the M/G/1- and GI/M/1-type,

depending on whether the restriction is on the downward or

upward transitions, respectively. Since the block size of the

new process is of the same size as S+, the reduction in

computation time is more significant when the ratio between

the total size of the phase space and the size of S+ is larger.

Additionally, once the parameters of the new process are

computed we can use a quadratically convergent algorithm

like Cyclic Reduction [4] to find the matrix R+ of the new

process, which is shown to be a submatrix of the R matrix of

the original process, while the remaining entries are retrieved

by solving a Sylvester matrix equation. Finally, we also show

how additional restrictions on the transition probabilities lead

to further reductions on the computation times.

There are many examples of queueing systems where the

restricted transitions considered here arise. In an overflow

queue [7] the arrivals only occur when the first queue is full.

Hence the upward transitions are restricted to take place in

those states corresponding to a full first queue. This case is

similar to that when the inter-arrival times follow an Erlang

distribution, since the arrivals can only happen in the states

related to the last phase of the Erlang distribution. On the other

hand, priority queues [8], [9] illustrate the case of restricted

downward transitions. Here the downward transitions are as-

sociated to the service completion of a low-priority customer

and these transitions only occur in those states where there are

no high-priority customers. Another case is the QBD MC used

in [10] to compute the waiting time distribution of a type-k

customer in an MMAP[K]/PH[K]/c (c = 1, 2) queue, where

the downward transitions can only lead to a small subset of the

phase space. Some of these examples are used to illustrate the

behavior of the proposed approach compared to the traditional

methods and to the approach in [5]. The method proposed

here has been implemented in MATLAB and will be available

online as part of the SMCSolver tool [11].

The paper is organized as follows: Section II gives a brief

review of QBD processes. In sections III and IV we describe

how to exploit restricted downward and upward transitions in

these processes. Section V provides some numerical examples

of queueing systems with this kind of transitions and includes a

comparison with a number of existing computational methods.

II. QBDS WITH RESTRICTED TRANSITIONS

A discrete-time QBD MC can be defined as a two-

dimensional process {(Nt, Xt), t ≥ 0}, where Nt is called

the level variable and takes values on N. The phase variable

Xt takes values on the set {1, 2, . . . , m0} or {1, 2, . . . , m}
depending on whether the level is equal to or greater than

0. The level variable can only increase or decrease its value

by one at each time epoch and these transition probabilities

are level-independent. Therefore the QBD MC has a transition

matrix P of the form

P =

B1 B2 0 0 . . .
B0 A1 A2 0 . . .
0 A0 A1 A2 . . .
...

. . .
. . .

. . .
. . .

,

where B1 and A1 are square matrices of size m0 and m,

respectively. The matrices B1 and B2 hold the transition

probabilities from level 0 to levels 0 and 1, respectively, and

the matrix B0 contains the transition probabilities from level

1 to level 0. Similarly, the matrices A0, A1 and A2 carry the

transition probabilities from level i to level i− 1, i and i + 1,

respectively, for i > 0. The key when computing the steady

state probability vector π = [π0, π1, π2, . . .] of P , if it exists,

is to find the minimal nonnegative solution R of the matrix

equation

R = A2 + RA1 + R2A0. (1)

The vectors πi can then be computed as πi = π1R
i, for i > 1,

where [π0, π1] is the solution of the boundary equation

[π0, π1]

[

B1 B2

B0 A1 + RA0

]

= [π0, π1].

Another way to find the matrix R is from R = A1(I − A0 −
A1G)−1, where G is the minimal nonnegative solution of the

matrix equation

G = A0 + A1G + A0G
2. (2)

The method introduced in this paper aims at computing either

the matrix R or G, from which the stationary probability

vector can be obtained. Moreover, our approach is actually

independent of the behavior of the QBD near the boundary

at level 0. Therefore a more general boundary behavior can

be assumed as long as the QBD shows a repeating structure

(matrices A0, A1 and A2) from a given level onward.

Many iterative algorithms have been developed to solve

equations (1) and (2), including quadratically convergent

algorithms such as Logarithmic Reduction [3] and Cyclic

Reduction (CR) [4]. However, a large block size m may turn

the solution of these equations into a lengthy task, as each

iteration requires O(m3) time. In this paper we consider two

special cases where the structure of the matrices A0 and A2

can be exploited to speed-up the computation of the matrix

G or R. In both cases we consider a partition of the set

{1, . . . , m} into two sets: S+ containing the first r phases,

and S− containing the remaining m − r phases. Using this

partition the matrices Ai, for i = {0, 1, 2}, can be written as

Ai =

[

A++
i A+−

i

A−+
i A−−

i

]

, (3)

where A++
i and A−−

i are square matrices of size r and

m− r, respectively. In Section III we consider the case where

downward transitions can only occur to a state with phase in

S+, hence the matrix A0 has only r ≪ m nonzero columns

such that it can be written as

A0 =

[

A++
0 0

A−+
0 0

]

. (4)

When the set S+ contains only one phase the matrix G can be

computed explicitly without the need of resorting to iterative

algorithms [12]. Furthermore, this particular case has also been

exploited to compute performance measures in an efficient

manner without computing all the terms of the vector π [13].

In this paper we consider the more general case where the

cardinality of S+ is greater than one, meaning that the matrix

G is not known explicitly from the parameters of the QBD.

The analogous case where upward transitions only occur in

a state with phase in S+ is treated in Section IV. In this case

the matrix A2 has only r ≪ m nonzero rows, i.e.

A2 =

[

A++
2 A+−

2

0 0

]

. (5)

This structure was analyzed by Grassmann and Tavakoli in

[5], where it was exploited to reduce the computation time

per iteration in the so-called U-algorithm [6], which computes

a matrix U such that R = A2(I −U)−1. The algorithm starts

with U0 = A1 and iteratively computes Uk+1 = A1 + A2(I −
Uk)−1A0, such that the iterates converge to the actual value

of the matrix U . Even though the approach proposed in [5]

provides an important computational gain per iteration, the

number of iterations required may be large since this is a

linearly convergent algorithm [14]. In Section V we consider

an example with the structure described by (5) and compare

the performance of our approach with the one proposed in [5].

The Grassmann and Tavakoli method can also be adapted to

the case where the matrix A0 has the form in (4).

A. Markov chains of the M/G/1- and GI/M/1-type

An M/G/1-type MC [15] can be seen as a generalization of

a QBD MC, where the level is allowed to increase its value by

more than one in a single transition. Therefore, the transition

matrix P̄ of an M/G/1-type MC is of the form

P̄ =

B̄0 B̄1 B̄2 B̄3 · · ·
Ā0 Ā1 Ā2 Ā3 · · ·

Ā0 Ā1 Ā2 · · ·
Ā0 Ā1 · · ·

0
. . .

. . .

,

where Āi, for i ≥ 0, and B̄i, for i ≥ 0, are nonnega-

tive matrices in R
b×b such that

∑+∞

i=0 Āi and
∑+∞

i=0 B̄i are

stochastic. A numerically stable method to find the stationary

probability vector of this MC is Ramaswami’s formula [16],

which depends on the matrix Ḡ, that is the minimal non-

negative solution of

Ḡ =

∞
∑

i=0

ĀiḠ
i. (6)

The quadratically-convergent Cyclic Reduction algorithm can

also be applied to solve this equation.

On the other hand, a GI/M/1-type MC [2] can be seen as a

QBD where the chain is allowed to decrease several levels in a

single transition. The transition matrix for this MC is therefore

given by

P̂ =

B̂0 Â0 0

B̂1 Â1 Â0

B̂2 Â2 Â1 Â0

B̂3 Â3 Â2 Â1 . . .
...

...
. . .

. . .
. . .

,

where Âi, i ≥ 0, and B̂i, i ≥ 0 are nonnegative matrices in

R
b×b such that

∑n

i=0 Âi + B̂n is stochastic for all n ≥ 0. In

this case the stationary probability vector can be computed as

πi = π1R̂
i, where R̂ is the minimal non-negative solution to

R̂ =

∞
∑

i=0

R̂iÂi. (7)

To solve this equation we first compute the dual process, which

is of the M/G/1-type, which allows us to use the quadratically

convergent CR algorithm. There are two different duals that

can be used for this purpose. A brief description of both is

included in Appendix A. Here we have assumed a particular

boundary behavior for both the M/G/1- and GI/M/1-type MCs.

A more general boundary can be assumed since our results are

related to the behavior of the MCs away from the boundary,

which is described by the Āi or the Âi matrices.

III. QBDS WITH RESTRICTED DOWNWARD TRANSITIONS

In this section we describe how the special structure of the

matrix A0 can be exploited to compute the matrix G. Consider

the case where the matrix A0 has only r ≪ m nonzero

columns as shown in Equation (4). The (i, j)-th entry of the

matrix G holds the probability that the first visit to level k−1
occurs by visiting state (k−1, j), starting from state (k, i), for

k > 1 [12]. Since the downward transitions can only occur to

the first r states of any level, the G matrix has the structure

G =

[

G+ 0
G0 0

]

,

where G+ (resp. G0) is an r × r (resp. (m − r) × r) matrix.

The computation of G+ and G0 will be split in two steps such

that for r ≪ m the total computation time can be significantly

reduced.

A. Computing G+

To compute G+ we define a new process by observing the

QBD MC only when the phase variable is in the set S+. In

the original process any transition to a lower level triggers the

phase to a state in S+, therefore the new process can only

move one level down at each transition. On the other hand,

the original process can move several levels upward while the

phase is in S−, i.e., between two visits to S+. Therefore the

new process can move several levels up in one transition but

only one level down. Hence, the new process is of the M/G/1-

type and its behavior away from the boundary is characterized

by a set of r × r matrices (Āi)i≥0. The minimal nonnegative

solution Ḡ of Equation (6) is actually equal to the matrix G+.

This follows from the definition of the matrix Ḡ as the first

passage probability to the state (k − 1, j) starting from state

(k, i) in the new process, and the fact that in the original

process the downward transitions can only lead to S+. Hence,

to compute the matrix G+ we first need to determine the r×r
blocks (Āi)i≥0 and then solve Equation (6).

To specify the blocks (Āi)i≥0 let the (i, j)-th entry of the

(m − r) × r matrix Kl hold the probability that, given that

the original process starts in state (k, i), with i ∈ S−, its

first transition to a state with phase in S+ occurs to the state

(k + l, j), for j ∈ S+, k > 1 and l ∈ {−1, 0, 1, ...}. Hence,

the matrices (Ki)i≥−1 are given by

K−1 = (I − A−−
1)−1A−+

0 ,
K0 = (I − A−−

1)−1(A−+
1 + A−−

2 K−1),
K1 = (I − A−−

1)−1(A−+
2 + A−−

2 K0),
Ki = (I − A−−

1)−1A−−
2 Ki−1, i ≥ 2.

(8)

To define K−1 we observe that the chain starts in level k and

spends some time in the states of this level with phase in S−.

Afterward the chain has to move to a state (k − 1, j), with

j ∈ S+. The only other possible state that the chain could

visit after its sojourn in level k, avoiding states with phase in

S+, is to move to a state in level k + 1 and phase in S−.

However, for the chain to visit level k − 1 it first has to go

back from level k + 1 to level k, and this can only be done

through a state with phase in S+. Therefore, this path is not

possible if the first state with phase in S+ to be visited must

be in level k − 1. The definition of the other matrices can be

understood in a similar manner. Now we can define the blocks

(Āi)i≥0 in terms of the matrices (Ki)i≥−1 as

Ā0 = A++
0 + A+−

1 K−1,
Ā1 = A++

1 + A+−
1 K0 + A+−

2 K−1,
Ā2 = A++

2 + A+−
1 K1 + A+−

2 K0,
Āi = A+−

1 Ki−1 + A+−
2 Ki−2, i ≥ 3.

(9)

To define Ā0 we see that the transition from a state (k, i)
to a state (k − 1, j), with i, j ∈ S+, can only occur in two

ways: either the chain goes directly to (k−1, j) with transition

matrix A++
0 ; or it moves first to a state in level k with phase

in S− and, after a sojourn in these states, it moves downward

avoiding other states in S+ (with transition matrix A+−
1 K−1).

A transition to level k+1 is not allowed since the chain cannot

return to k − 1 without passing through a state in level k
with phase in S+. The other matrices can be defined similarly.

Notice, to compute the matrices Āi it suffices to store two Ki

matrices at a time. The r × r matrices Āi are sequentially

computed from i = 0 to c, where c is the smallest positive

integer such that
∑c

i=0 Āie > (1−ǫ)e, with e a column vector

of ones and ǫ = 10−14. These blocks can then be used to

compute the matrix G+ using the CR algorithm [4].

B. Computing G0

Given the structure of the matrices A0 and G we can rewrite

Equation (2) as

[

G+ 0
G0 0

]

=

[

A++
0 0

A−+
0 0

]

+

[

A++
1 A+−

1

A−+
1 A−−

1

] [

G+ 0
G0 0

]

+

[

A++
2 A+−

2

A−+
2 A−−

2

] [

G2
+ 0

G0G+ 0

]

. (10)

Extracting the lower-left block we find

G0 − (I − A−−
1)−1A−−

2 G0G+ =

(I − A−−
1)−1(A−+

0 + A−+
1 G+ + A−+

2 G2
+), (11)

which is a Sylvester matrix equation [17], [18] of the type

AXB + X = E, which can be solved in O((m − r)3)
time with the Hessenberg-Schur method proposed in [17]. A

brief description of this method is included in Appendix B

together with a discussion on some additional considerations

that influence the computation time of G0.

C. Restricted downward transitions and A−−
2 = 0

Let the matrix A0 have the structure shown in Equation (4).

Additionally, assume that upward transitions from states with

phase in S− take the process to a state with phase in S+, i.e.,

the matrix A2 has the form

A2 =

[

A++
2 A+−

2

A−+
2 0

]

.

With this structure, the maximum number of upward tran-

sitions between two visits to S+ is two, since an upward

transition from S− must end in S+. Therefore the reduced

process of the M/G/1-type, constructed by observing the

original process when the phase is in S+, has only four

nonzero blocks defined as

Ā0 = A++
0 + A+−

1 (I − A−−
1)−1A−+

0 ,

Ā1 = A++
1 + A+−

1 (I − A−−
1)−1A−+

1

+ A+−
2 (I − A−−

1)−1A−+
0 ,

Ā2 = A++
2 + A+−

1 (I − A−−
1)−1A−+

2

+ A+−
2 (I − A−−

1)−1A−+
1 ,

Ā3 = A+−
2 (I − A−−

1)−1A−+
2 .

The definition of these blocks can be obtained directly from

the equations (8) and (9) as follows: A−−
2 = 0 implies that

Ki = 0 for i ≥ 2, which therefore means that Ai = 0 for

i ≥ 3. Additionally, the fact that A−−
2 = 0 also simplifies the

expressions for K0 and K1, which are used in the definition of

the matrices Ā1, Ā2 and Ā3. This additional structure reduces

both the time to compute the blocks and the time to find G+

using CR. Additionally, to find G0 we consider again Equation

(10) and by extracting its lower-left block we find

G0 = (I − A−−
1)−1

(

A−+
0 + A−+

1 G+ + A−+
2 G2

+

)

.

Therefore, there is no need for solving a Sylvester matrix

equation, as was done before, as G0 can be determined directly

from G+ and other already computed matrices. With this

additional constraint the problem of finding the m×m matrix

G is replaced by the determination of just four r× r matrices

and the solution of Equation (6) using these smaller matrices.

D. Restricted downward and upward transitions

Now we assume that the matrices A0 and A2 of the

QBD have the structure described in equations (4) and (5),

respectively. In this case the process obtained by observing

the QBD when the phase is in the set S+ is again a QBD

with parameters

Ā0 = A++
0 + A+−

1 (I − A−−
1)−1A−+

0 ,

Ā1 = A++
1 + A+−

1 (I − A−−
1)−1A−+

1

+ A+−
2 (I − A−−

1)−1A−+
0 ,

Ā2 = A++
2 + A+−

2 (I − A−−
1)−1A−+

1 .

To obtain these expressions, in addition to the simplifications

due to A−−
2 = 0 explained above, we notice that K1 becomes

zero since both A−+
2 and A−−

2 are equal to zero. Hence Ā3

also becomes zero and the resulting process is again a QBD

(of a smaller block size). Moreover, the matrix G0 is given by

G0 = (I − A−−
1)−1

(

A−+
0 + A−+

1 G+

)

.

The reduction in computation time is evident since now it is

enough to find the solution to Equation (2) with matrices of

size r instead of m. The number of matrix multiplications

required to compute the blocks of the QBD process and the

matrix G0 is fixed and small compared to the solution of

Equation (2).

IV. QBDS WITH RESTRICTED UPWARD TRANSITIONS

We now turn to the case where the matrix A2 has only

r ≪ m nonzero rows as in Equation (5), restricting the upward

transitions to occur only when the phase variable is in S+. In

a QBD the (i, j)-th entry of the rate matrix R from Equation

(1) can be interpreted as the expected number of visits to the

state (k + 1, j) starting from state (k, i) before visiting any

other state at level k [2]. To visit a state in level k+1 starting

from level k, while avoiding level k, the first transition must

take the chain from level k to level k + 1. However, due to

the structure of A2, no upward transition can be made if the

phase variable is in S−. Hence the last m − r rows of the

matrix R are equal to zero, and R can be written as

R =

[

R+ R0

0 0

]

,

where R+ and R0 are matrices of size r× r and r× (m− r),
respectively. In a similar way as in the previous case, we define

a new process by observing the original QBD MC when the

phase variable is in S+. In this case the level cannot increase

in the phases outside S+, but it can decrease several levels

between two visits to S+. Therefore, the new process is a

Markov chain of the GI/M/1-type. Using this process we can

find the matrices R+ and R0 separately, as shown next.

A. Computing R+

The behavior of the censored process, obtained by observing

the original QBD MC when the phase is in S+, is charac-

terized away from the boundary by a set of r × r matrices

(Âi)i≥0. Let R̂ be the minimal nonnegative solution of the

Equation (7). Then the (i, j)-th entry of the matrix R̂ can be

interpreted as the expected number of visits to state (k+1, j),
starting from state (k, i), before the first return to level k [2],

for (i, j) ∈ S+ and k > 1. This is the same interpretation

as the (i, j)-the entry of R+; therefore R+ = R̂. To find R̂
we first need to specify the blocks (Âi)i≥0, which is done in

terms of the matrices (W−i)i≥0.

Let the entry (i, j) of the (m − r) × r matrix W−l be the

probability that, given that the original process starts in state

(k, i) with i ∈ S−, its first transition to a state with phase in

the set S+ occurs in the state (k−l, j), for j ∈ S+, k > l ≥ 0.

Hence, the matrices (W−i)i≥0 are given by

W0 = (I − A−−
1)−1A−+

1 ,

W−1 = (I − A−−
1)−1(A−+

0 + A−−
0 W0),

W−i = (I − A−−
1)−1A−−

0 W−(i−1), i ≥ 2.

The blocks (Âi)i≥0 can be defined in terms of the matrices

(W−i)i≥0 as

Â0 = A++
2 + A+−

2 W0,

Â1 = A++
1 + A+−

1 W0 + A+−
2 W−1,

Â2 = A++
0 + A+−

0 W0 + A+−
1 W−1 + A+−

2 W−2,

Âi = A+−
0 W−i+2 + A+−

1 W−i+1 + A+−
2 W−i, i ≥ 3.

The blocks Âi are computed from i = 0 to c, where c is

the smallest positive integer such that
∑c

i=0 Âie > (1 − ǫ)e.

In this case it suffices to keep track of the three matrices

{W−i+2, W−i+1, W−i} when computing the matrix Ai. As

stated before, we need to compute the dual process of the

GI/M/1-type MC characterized by (Âi)i≥0 in order to apply

the CR algorithm. We use the dual relationship to compute the

M/G/1-type blocks and, after solving a matrix equation of the

type (6), retrieve R+ from the G matrix of the dual. Since there

are two different duals that can be used (see Appendix A), we

consider both alternatives and compare their performance in

Section V.

B. Computing R0

By writing Equation (1) in block form and extracting the

upper-right corner, we find

R0 − R+R0A
−−
0 (I − A−−

1)−1 =

(A+−
2 + R+A+−

1 + R2
+A+−

0)(I − A−−
1)−1. (12)

This is also a Sylvester matrix equation of the type AXB +
X = E, which can be solved in O((m − r)3) time using the

Hessenberg-Schur method proposed in [17] (see Appendix B).

C. Restricted upward transitions and A−−
0 = 0

When the matrix A2 of the QBD MC has only r nonzero

rows as in Equation (5) and additionally the block A−−
0 is

equal to zero, we can further improve the new algorithm in a

manner analogue to Section III-C. We omit the details due to

the similarity between both cases.

V. EXAMPLES

In this section we consider two continuous-time queueing

systems in which the structures analyzed in the previous

sections arise naturally (where a standard uniformization ar-

gument is applied to transform the problem to discrete time).

First we present a priority queue with two customer classes

that can be modeled as a QBD process with restricted down-

ward transitions. The case of a QBD process with restricted

upward transitions is illustrated with an overflow queue. In

both cases we compare the times required to compute the

matrix R or G using the full-size QBD and the approach

proposed in this paper. For the overflow queue we also

compare with the approach proposed in [5].

In the remainder of this section we provide a brief de-

scription of the continuous-time Markovian Arrival Processes

(MAPs) and Phase-Type (PH) distribution [12] as both are

used in the case studies presented below. A MAP is charac-

terized by the parameters (n, D0, D1), where n is a positive

integer, and D0 and D1 are n × n matrices. This process

is driven by an underlying MC with generator matrix D =
D0 +D1, where D1 and D0 contain the intensities associated

to transitions with and without arrivals, respectively. The off-

diagonal entries of D0 and all the entries of D1 must be non-

negative, while the diagonal entries of D0 must be negative

and such that (D0 + D1)e = 0. Let γ be the stationary

distribution of the underlying MC, i.e., a 1 × n vector such

that γD = 0 and γe = 1. The arrival rate of the MAP is

given by γD1e. This process can be generalized by introducing

markings to discriminate among different types of customers.

In the forthcoming examples it is enough to consider a marked

MAP (MMAP) with two types of customers. In addition to

the parameters n and D0, the MMAP is characterized by the

matrices D1 and D2, which hold the transition intensities asso-

ciated with an arrival of type 1 and 2, respectively. In this case

the underlying MC has generator matrix D = D0 + D1 + D2

and the arrival rate of customers of type i is equal to γDie,

for i = 1, 2.

A PH distribution is characterized by the triple (n, α, T),
where n is a positive integer, α is a 1×n vector and T a square

matrix of size n. A PH distribution describes the absorption

time in an MC where the states {1, . . . , n} are transient and an

additional state, say n+1, is absorbing. The initial probability

distribution of the transient states is given by α, while T is

the sub-generator matrix of these states. Therefore, the j-th

entry of the vector t = −Te holds the absorption rate in state

j, for 1 ≤ j ≤ n. The cumulative distribution function of a

PH variable is given by F (x) = 1 − α exp(Tx)e, for x ≥ 0.

For further reference recall that the Kronecker product of the

matrices A and B, denoted A ⊗ B, is the block matrix with

block (i, j) equal to AijB. The Kronecker sum A ⊕ B is

defined as A ⊗ I + I ⊗ B, where I is an identity matrix of

appropriate dimension.

A. Priority Queue

Our first example is a continuous-time priority queue with

two classes of customers. Class-1 customers have preemptive

priority over class-2 customers. Therefore, customers of class

2 can only be served if there are no class-1 customers in the

queue and the service of a class-2 customer is interrupted if

a customer of class 1 arrives. The high-priority arrivals are

described by a MAP characterized by (m1
a, C1

0 , C1
1) while the

MAP of the low-priority arrivals has parameters (m2
a, C2

0 , C2
1).

These two processes can be combined in a single marked

MAP with parameters D0 = C1
0 ⊕ C2

0 , D1 = C1
1 ⊗ I

and D2 = I ⊗ C2
1 . The service times of class-1 (resp.

class-2) customers follow a PH distribution with parameters

(m1
s, α, T) (resp. (m2

s, β, S)). To model this queue as a QBD

with restricted downward transitions we take the level as the

number of low-priority customers in the queue, and assume

a finite buffer of size C for the class-1 customers. This

assumption places no restriction in the analysis since this

buffer can be dimensioned such that the blocking probability of

a high-priority customer is below a certain threshold, allowing

us to truncate its infinite size. Given the preemptive nature of

the priority queue, this can be done using a QBD MC that

ignores the low-priority customers. The second dimension of

the QBD therefore holds the number of class-1 customers, the

phase of the arrival process and the phase of the customer in

service. If there is a class-1 customer in service, the service

phase includes both the current phase of that customer and the

starting phase of the next class-2 customer, and vice versa.

This means that the block size is m = (C + 1)m̄, where

m̄ = m1
am2

am1
sm

2
s . With some minor abuse of notation, the

QBD blocks are given by

A0 =

I ⊗ sβ ⊗ I 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

,

A1 =

(D0 ⊕ S) ⊗ I D1 ⊗ I 0 . . . 0
I ⊗ tα D0 ⊕ T D1 ⊗ I . . . 0

...
. . .

. . .
. . .

...

0 0 . . . D0 ⊕ T D1 ⊗ I
0 0 . . . I ⊗ tα D ⊕ T

,

A2 =

D2 ⊗ I 0 . . . 0
0 D2 ⊗ I . . . 0
...

. . .
. . .

...

0 0 . . . D2 ⊗ I

,

where D = D0 + D1, t = −Te and s = −Se. Since low-

priority service completions can only occur when there are

no high-priority customers in queue, downward transitions are

limited to occur when the process is in one of the first r = m̄
phases and such transitions trigger the process to the same set

of phases. Therefore the structure of A0 can be exploited as

shown in Section III.

For the numerical results shown next we consider a high-

priority buffer of size C = 49 and, for both customer classes,

hyper-exponential service times with mean one and squared

coefficient of variation (SCV) equal to two. The parameters

of the service distribution are computed using the moment-

matching method in [19], that results in a PH representation

of order 2. The arrival processes are built using the method in

[20], [21] that allows the matching of the first two moments

of the inter-arrival distribution and the decay rate of the

autocorrelation function γ with a MAP of size 2. In this

case both MAPs have the same mean, fixed by the load ρ,

and SCV equal to five. For this queue the load is given by

ρ = λ1/µ1 + λ2/µ2, where λi and µi are the arrival and

service rates of type-i customers, respectively, for i = 1, 2.

Since the service rates are equal to one and the arrival rates

are equal, then λ1 = λ2 = ρ/2. We consider two scenarios, in

the first the inter-arrival times are independent (γ = 0), while

in the second γ is equal to 0.9. With this set of parameters

the block size is 800 while the number of nonzero columns

in A0 is 16.

In Table I we show the time required to compute the matrix

G using the full-size QBD with the CR algorithm (QBD-

CR), the time to compute the M/G/1-type blocks (Bl), the

number of those blocks, the time to compute the matrix G+

with CR (MG1-CR) and the time to solve the Sylvester matrix

equation to get G0 (Sylv). The total computation time using

the reduced process is shown in column MG1, and the last

column has the ratio between the columns QBD and MG1.

Clearly, the M/G/1-type based method outperforms the full-

size approach, which can take 4 to 8 times longer to compute

G. Also, when the load ρ increases both methods require more

computation time, particularly the CR algorithm for the QBD

and the computation of the M/G/1-type blocks. A large load

has two major effects: first, it increases the rate of upward

transitions per time unit; second, since the set S+ includes

only the phases in which there are no high-priority customers

in queue, a larger load increases the likelihood of having long

sojourn times in S−. These two effects together imply that the

number of blocks to compute increases and the CR algorithm

requires more time to find G+. In contrast, the Hessenberg-

Schur method to solve Equation (11) shows a more stable

behavior, not being directly affected by the load of the queue.

Table II contains the same information as the previous

one, but in this scenario the arrival processes are highly

autocorrelated, with decay rate of the autocorrelation function

γ = 0.9. As can be observed, the correlation, together with the

load, has a large effect on the number of M/G/1-type blocks

that describe the reduced process and therefore on the time

required to compute those blocks and to find G+. On the other

Table I
COMPUTATION TIMES (SEC) FOR THE PRIORITY QUEUE WITH γ = 0

ρ QBD-CR Bl # Bl MG1-CR Sylv MG1 Ratio

0.1 34.34 1.38 19 0.06 5.14 6.58 5.22

0.2 34.36 1.55 33 0.13 6.81 8.49 4.05

0.3 39.34 1.78 50 0.14 5.16 7.08 5.56

0.4 39.36 2.08 73 0.25 3.53 5.86 6.72

0.5 44.36 2.5 103 0.28 6.84 9.63 4.61

0.6 44.42 3.08 141 0.75 6.84 10.67 4.16

0.7 49.45 3.75 192 0.72 6.86 11.33 4.37

0.8 49.44 4.72 260 1.19 5.19 11.1 4.46

0.9 59.48 5.97 347 2.91 3.55 12.42 4.79

1 139.78 7.72 466 3.34 5.19 16.25 8.6

Table II
COMPUTATION TIMES (SEC) FOR THE PRIORITY QUEUE WITH γ = 0.9

ρ QBD-CR Bl # Bl MG1-CR Sylv MG1 Ratio

0.1 34.44 1.39 20 0.06 5.2 6.66 5.17

0.2 39.44 1.61 38 0.13 6.89 8.63 4.57

0.3 39.42 1.94 64 0.25 3.55 5.73 6.87

0.4 44.45 2.44 105 0.27 3.55 6.25 7.11

0.5 49.47 3.33 169 0.78 5.22 9.33 5.3

0.6 54.44 4.53 270 1.3 5.24 11.06 4.92

0.7 59.5 6.8 431 3.02 5.2 15.02 3.96

0.8 64.5 10.48 680 11.19 5.23 26.91 2.4

0.9 69.47 16.42 1059 13.13 5.25 34.8 2

1 109.61 26.33 1602 45.39 3.58 75.3 1.46

hand, the correlation has little effect on the computation times

of the full-size QBD, as well as on the time to find G0 with the

Hessenberg-Schur method. Therefore, the reduced process still

offers a reduction in computation times but this gain is affected

by the system parameters. A similar behavior is observed in

the next example.

In addition to the computation times, it is relevant to

consider the behavior of the approach introduced in this paper

in terms of the residual error. Let the infinity norm of an n×m
matrix K be given by ||K||∞ = maxn

i=1

∑m

j=1 Kij . Let G̃ be

the matrix that solves Equation (2) obtained with the approach

of Section III. Then the residual error is defined as

||G̃ − A0 + A1G̃ + A0G̃
2||∞,

which gives a measure of the goodness of G̃ as a solution for

Equation (2). In all the instance considered here the residual

error was always below 10−14, revealing the good behavior of

the approach proposed here. This behavior is to be expected

since the algorithms on which our method relies (Cyclic

Reduction and the Hessenberg-Schur method for the Sylvester

equation) are numerically stable. A similar result in terms of

the residual error holds for the example in the next section.

B. Overflow Queue

The second example is an overflow queueing system con-

sisting of two queues. The arrival process to the first queue is

a MAP characterized by (ma, D0, D1). Customers arriving at

the first queue are attended in FCFS order by a single server

with service times following a PH distribution characterized

by the parameters (m1
s, α, T). This queue has a finite buffer

of size C and a customer that arrives at a full buffer is sent to

the second queue. The second queue receives only overflow

arrivals from the first queue and attends them in FCFS order

with a single server. The service times in this queue follow a

PH distribution with parameters (m2
s, β, S). Hence, the arrival

process at the second queue can be described by a MAP with

parameters (mo, C0, C1) given by mo = (C + 1)mam1
s,

C0 =

D0 ⊗ I D1 ⊗ I 0 . . . 0 0
I ⊗ tα D0 ⊕ T D1 ⊗ I . . . 0 0

0 I ⊗ tα D0 ⊕ T . . . 0 0
...

. . .
. . .

. . .
...

...

0 0 0 . . . D0 ⊕ T D1 ⊗ I
0 0 0 . . . I ⊗ tα D0 ⊕ T

,

C1 =

0 . . . 0 0
...

. . .
...

...

0 . . . 0 D1 ⊗ I

,

where t = −Te. Assuming an infinite buffer at the second

queue, we can model the queueing system as a QBD where the

level describes the number of customers in the second queue.

The second dimension holds the phase of the current customer

in service and the phase of the arrival process in the second

queue. The parameters of the QBD are A0 = I ⊗ sβ, A1 =
C0⊕S, A2 = C1⊗I , with s = −Se. In this case, the restricted

upward transitions are a result of the overflow process, as can

be seen in the structure of C1, where the arrivals to the second

queue can only occur in the last mam1
s phases. As a result, the

inclusion of a separate arrival stream directed to the second

queue would suppress this structure. The block size in this

case is m = mom
2
s and the number of nonzero rows in A2 is

r = mam1
sm

2
s .

As with the previous example, we make use of the moment-

matching methods in [19], [20], [21] to obtain PH and MAP

representations of the service and arrival processes, respec-

tively. The arrival process at the first queue has arrival rate and

SCV equal to five while the service time has mean one and

SCV equal to two. Therefore the first queue is heavily loaded

and many customers are overflowed to the second queue. The

arrival rate at the second queue (λ2) is the arrival rate of the

MAP with parameters (C0, C1). Therefore for a given load at

the second queue (ρ2) the service rate at this queue is fixed

by the relation ρ2 = λ2/µ2. In this queue the service times

have SCV equal to two, as in the first queue. The results are

presented for different values of ρ2 and a buffer size of 100

in the first queue. With these parameters the block size is

m = 808 while the number of nonzero rows in A2 is r = 8.

Table III shows the computation times in a similar fashion

as the previous tables, with the main difference being that

the column GM1-CR-R (resp. GM1-CR-B) includes the time

to compute the blocks of the Ramaswami (resp. Bright) dual

process and the time to solve the dual with the CR algorithm.

Table III
COMPUTATION TIMES (SEC) FOR THE OVERFLOW QUEUE WITH C = 100

ρ2 QBD-CR Bl # Bl GM1-CR-R GM1-CR-B Sylv GM1-R GM1-B Ratio-R Ratio-B

0.1 31.91 24.92 2791 17.11 8.14 2.25 44.28 35.31 0.72 0.90

0.2 37.19 12.38 1431 9.78 1.95 2.23 24.39 16.56 1.52 2.25

0.3 42.3 8.63 980 2.33 0.53 2.25 13.20 11.41 3.20 3.71

0.4 42.3 6.73 745 2.27 0.63 2.25 11.25 9.61 3.76 4.40

0.5 47.38 5.63 601 1.17 0.64 3.94 10.73 10.2 4.41 4.64

0.6 47.38 4.94 511 0.81 0.25 2.23 7.98 7.42 5.93 6.38

0.7 52.47 4.41 442 0.81 0.58 2.24 7.45 7.22 7.04 7.27

0.8 57.56 4.02 391 0.78 0.58 2.25 7.05 6.84 8.17 8.41

0.9 62.67 3.70 350 0.66 0.45 2.23 6.59 6.39 9.51 9.81

1 169.69 3.47 317 0.78 0.78 2.22 6.47 6.47 26.23 26.24

The columns GM1-R and GM1-B show the total computation

times to find R using the two different duals, while the

columns Ratio-R and Ratio-B hold the ratio between the QBD-

CR and the GM1-R and GM1-B columns, respectively. Again,

the load has an important effect on the computation times,

but in this case the consequences are reversed. When the

load is low the original process can make many downward

transitions between two visits to the set S+, increasing the

number of GI/M/1-type blocks. As before, a large number of

blocks increases the computation time of the CR algorithm for

the M/G/1-type MC (the dual process) but it has little effect on

the solution of the Sylvester equation and the full-size QBD.

For loads between 0.2 and 0.9 in this scenario, the solution of

the full-size QBD may take between 2 and 10 times as long

as the solution of the reduced process. When the load is one

the process is null recurrent and the QBD-CR takes a much

longer time than for lower loads. This effect can be reduced

by using a shifting technique [14], resulting in times similar

to those shown for loads up to 0.9. When comparing the two

alternative duals, it is clear how the Bright dual outperforms

the Ramaswami dual, being specially effective when the load

is low, i.e., when the number of GI/M/1-type blocks is large.

This effect is to be expected since for ρ2 < 1 the GI/M/1-type

MC is positive recurrent, and therefore the Ramaswami dual is

transient while the Bright dual is positive recurrent (see [22]).

In Figure 1 we include, for the full-size QBD, the compu-

tation times of CR (QBD-CR), the original U-based algorithm

(QBD-U) and the modified version of the U-based algorithm

(QBD-GT) proposed by Grassman and Tavakoli [5] to exploit

the special structure of A2. We also include the total time

required to solve the reduced process using the Ramaswami

dual (GM1-R) and the Bright dual (GM1-B). The scenario is

the same as in the previous case with the only exception that

the buffer size in the first queue is C = 50. This means that

the block size is m = 408 while the number of nonzero rows

in A2 does not change. This reduction is done because of the

long computation times experienced with the U-based method,

as can be observed in the figure. From these results it is

evident the substantial gain obtained by the QBD-GT method

compared to the original QBD-U, which requires about 5 times

as much computation time. In spite of this gain, the QBD-

GT method performs better than the QBD-CR only for small

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10

20

30

40

50

60

70

80

90

100

ρ
2

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
e
c
)

QBD−CR
QBD−U
QBD−GT
GM1−R
GM1−B

Figure 1. Computation times (sec) for the overflow queue with C = 50

values of ρ2. In contrast, the GI/M/1-type based approach

performs better than CR on the full-size QBD, except for low

values of ρ2. For the remaining part of the load range (except

ρ2 = 1) the QBD-CR takes up to 6 times as much time as the

GI/M/1-type based approach. In this case the time to compute

R is smaller using the Bright dual than the Ramaswami dual.

The difference is significant for low loads, when the number

of blocks is large (2800 for ρ2 = 0.1) and it vanishes when

the load is high. Therefore, the use of the Bright dual implies

an important reduction in computation times in the range of

the load that is more critical for the reduced process.

In both examples we have shown that the computation times

can be substantially reduced by using the approach proposed in

this paper. For each case the gain increases with the ratio m/r
as expected, but it also depends on other factors related to the

parameters of the system modeled. Even though for some cases

the reduced-process approach may take longer than solving

the full-size QBD, exploiting the structure of the matrices

A0 or A2 may reduce the computation times substantially.

To determine whether the reduced process can be useful for a

particular system or not, attention must be paid to the expected

sojourn times in S− related to those in S+. If the sojourn times

in S− are too long compared with the sojourn times in S+, the

reduced process will need many blocks to be described. This

increases both the time required to compute the blocks and the

time to find G+ or R+. However, to analyze the performance

of a particular system it is usual to consider a broad range

of conditions (load, variability, etc.), and it is likely that for a

considerable part of this range the reduced process can provide

important reductions in computation times. Additionally, the

parameters of the system under analysis not only affect the

reduced process but also the original process. This can be

observed in our examples, where an increase in the load

increased the computation times of the original QBD for both

the overflow and the priority queue. An additional gain can be

obtained for the GI/M/1-type case by using the Bright dual,

which helps to reduce the computation time specially in those

cases where the reduced process requires more time, i.e., when

the number of blocks is large.

APPENDIX A

DUAL PROCESSES

In this section we describe two dual relationships between

discrete-time M/G/1- and GI/M/1-type processes. In both cases

the dual process can be seen as the time-reverse of the

original process with respect to an invariant measure [23],

[24]. We consider the computation of an M/G/1-type MC as

the dual of a GI/M/1-type MC, but the opposite relationship

can be defined in a similar manner. The Ramaswami dual was

introduced in [25] and its probabilistic interpretation given in

[23]. Let the set of matrices (Ai)i≥0 describe a GI/M/1-type

MC, such that A =
∑∞

i=0 Ai is stochastic and irreducible.

Then A is the transition matrix of a discrete-time MC with

stationary probability vector α, i.e., αA = α and αe = 1.

Then the Ramaswami dual is an M/G/1-type MC characterized

by the set of matrices (AR
i)i≥0 given by AR

i = ∆−1
R A′

i∆R,

where ∆R = diag(α). The G matrix of this process, denoted

GR, is related to the R matrix of the original process by

GR = ∆−1
R R′∆R. Let ρ(M) denote the spectral radius of

a matrix M . Since the matrix GR has the same eigenvalues

as R, if the original GI/M/1-type MC is positive recurrent

(ρ(R) < 1) the dual process is transient (ρ(GR) < 1), and

vice versa. The dual process will be null recurrent if and only

if the original process is also null recurrent. In this case the

dual process is the time-reverse process with respect to the

invariant measure α.

We now turn to the Bright dual [24], which is defined as

the time-reverse process with respect to a different invariant

measure. If the GI/M/1-type MC is positive recurrent, the

eigenvalue of maximum real part of R is η = ρ(R) < 1. It has

been shown that the spectral radius of the matrix
∑∞

i=0 Aiη
i

is equal to one [15]. Therefore there exists a positive vector

wη such that

wη

(

∞
∑

i=0

Aiη
i

)

= wη.

The Bright dual is an M/G/1-type MC characterized by the

matrices (AB
i)i≥0 defined as AB

i = ηi−1∆−1
B Â′

i∆B, where

∆B = diag(wη). The matrix R of the original GI/M/1-type

MC and the matrix GB of the dual process are related by

GB = η−1∆−1
B R′∆B. In this case the eigenvalues of the

matrix GB are the eigenvalues of R divided by η. Hence

the spectral radius of GB is equal to one and the dual

process is positive recurrent [24]. The positive recurrent case

is particularly relevant because it can make a difference in

the time to compute the matrix R+. To find this matrix

we first compute the dual of the reduced process, which is

of the GI/M/1-type. When the process is positive recurrent,

as in the examples shown in Section V for loads less than

one, the Ramaswami dual will be transient while the Bright

dual will be positive recurrent. As explained in detail in

[22], the Bright dual can therefore reduce the computation

times achieved by the Ramaswami dual considerably. This

is confirmed numerically in Section V, especially when the

load of the overflow queue is small, which results in a large

number of blocks for the GI/M/1-type MC and a small value

of η. The computation time for the reduced process increases

with the number of blocks, but the gain that can be realized

by using the Bright dual is larger when η is smaller [22].

Therefore, the Bright dual becomes especially useful in this

case as it compensates the larger computation times caused by

the number of blocks.

APPENDIX B

SOLVING SYLVESTER MATRIX EQUATIONS

In this section we describe how to solve the matrix equations

(11) and (12) using the Hessenberg-Schur decomposition

proposed in [17]. As noted before, these are Sylvester matrix

equations of the form AXB+X = E. Consider Equation (11)

and let n = m − r, then X and E are n × r matrices, while

A and B are square matrices of size n and r, respectively.

The first step to solve this linear system is to find orthogonal

matrices U and V such that U ′AU = P and V ′BV = R,
where P is an upper-Hessenberg matrix, R is a quasi-upper

triangular matrix and ′ denotes the transpose operator. A

matrix P is upper-Hessenberg if its entries Pij = 0 for

i > j + 1. A quasi-upper triangular matrix, also called real

Schur form, is block-triangular with 1×1 (resp. 2×2) diagonal

blocks that correspond to the real (resp. complex) eigenvalues

[26]. While the Hessenberg decomposition to obtain U can

be done using Householder transformations, the real Schur

decomposition to compute V makes use of the QR algorithm,

see [26, Chapter 7]. Let F = U ′EV and Y = U ′XV , then

the linear system becomes PY R + Y = F . Therefore, to find

Yk, the k-th column of the matrix Y , we need to solve the

system

P

max(k+1,r)
∑

j=1

RjkYj + Yk = Fk,

for 1 ≤ k ≤ r. However, the quasi-upper triangular form of R
greatly simplifies this system. For k < r there are two possible

cases, either Rk+1,k = 0 or not. If Rk+1,k = 0, then Yk is the

solution to the n × n Hessenberg system

(PRk,k + I)Yk = Fk −

k−1
∑

j=1

RjkPYj , (13)

which can be solved in O(n2) time. On the other hand,

Rk+1,k 6= 0 implies Rk+2,k+1 = 0, and hence we need to

solve
[

PRk,k + I PRk+1,k

PRk,k+1 PRk+1,k+1 + I

] [

Yk

Yk+1

]

=

[

F̂ k−1
k

F̂ k−1
k+1

]

, (14)

where F̂ l
k = Fk −

∑l

j=1 RjkPYj , for 1 ≤ l ≤ k − 1 and

1 ≤ k ≤ r. This 2n × 2n linear system is upper-triangular

with two nonzero subdiagonals that can be solved in O(n2)
time [17]. Notice, to determine Yk it is necessary to know

Y1, . . . , Yk−1. Therefore, the algorithm starts by computing

the first (or first two) column(s), and then works forward until

the last column of Y has been computed. After finding Y , the

matrix X can be computed as X = UY V ′.

It is possible to apply this procedure to either the original

or the transpose B′X ′A′ + X ′ = E′ system. In the first

case A is transformed into Hessenberg form and B into real

Schur form, while the opposite happens in the second case.

The choice directly affects the computation times since for

a matrix of size b the Schur decomposition can be done in

10b3 operations, while it takes 5
3b3 operations to compute the

Hessenberg decomposition using Householder transformations

[17], [26]. Therefore, to solve Equation (11) it is better to

use the original system since the Hessenberg decomposition

is applied on the n × n matrix A, which is larger than the

r×r matrix B under the assumption that r ≪ m. On the other

hand, to solve Equation (12) it is preferable to first transpose

the system since in that case B is a n × n matrix given by

B = A−−
0 (I − A−−

1)−1.

An additional issue to take into account when solving

equations (11) and (12) is the actual computation of the

matrices A, B and E. Take for example Equation (11),

where A = (I − A−−
1)−1A−−

2 , B = G+ and E =
(I − A−−

1)−1(A−+
0 + A−+

1 G+ + A−+
2 G2

+). Although all the

matrices involved are already computed it is still necessary to

perform two matrix multiplications to determine A and E. In

the examples shown in this paper the A−+
i blocks are sparse

or even zero. In some cases however these blocks can be

dense and therefore these matrix multiplications may require

considerably more time. A way to avoid this is to solve the

slightly different equation

(I−A−−
1)G0−A−−

2 G0G+ = A−+
0 +A−+

1 G++A−+
2 G2

+,

which is a Sylvester matrix equation of the type AXB+CX =
E. The procedure to solve this equation is very similar to

the one shown above, but in this case the first step of the

QZ algorithm [26] is applied to the pair (A, C). As a result

A is reduced to Hessenberg form while C is transformed

into upper-triangular form. This, together with a reduction

of B to quasi-upper triangular form, allows the solution of

this equation in a similar way as done in (13) and (14). A

detailed explanation can be found in [18]. Since the matrices

A, B, C and E are already computed, this algorithm may

perform better when the blocks A−+
i are dense. We have

found instances of random QBDs with dense blocks where

this last algorithm outperforms the one based on the equation

AXB + X = E.

REFERENCES

[1] V. Wallace, “The solution of quasi birth and death processes arising
from multiple access computer systems,” Ph.D. dissertation, Systems
Engineering Laboratory, University of Michigan, 1969.

[2] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models. Balti-
more: The Johns Hopkins University Press, 1981.

[3] G. Latouche and V. Ramaswami, “A logarithmic reduction algorithm for
quasi-birth-and-death processes,” Journal of Applied Probability, vol. 30,
pp. 650–674, 1993.

[4] D. A. Bini and B. Meini, “On the solution of a nonlinear matrix equation
arising in queueing problems,” SIAM Journal of Matrix Analysis and
Applications, vol. 17, pp. 906–926, 1996.

[5] W. K. Grassmann and J. Tavakoli, “Solving QBD processes when levels
can increase only in certain phases,” manuscript in preparation, presented
at the MAM6 conference, Beijing (China), June 2008.

[6] G. Latouche, “Algorithms for infinite Markov chains with repeating
columns,” in Linear Algebra, Markov chains and Queueing Models,
C. D. Meyer and R. J. Plemmons, Eds. Springer-Verlag, 1993, pp.
231–265.

[7] K. S. Meier-Hellstern, “The analysis of a queue arising in overflow
models,” IEEE Transactions on Communications, vol. 37, pp. 367–372,
1989.

[8] J. W. Cohen, The Single Server Queue. North-Holland, 1969.
[9] N. K. Jaiswal, Priority Queues. Academic Press, 1968.

[10] B. Van Houdt and C. Blondia, “The waiting time distribution of a type k
customer in a discrete-time MMAP[K]/PH[K]/c (c = 1, 2) queue using
QBDs,” Stochastic Models, vol. 20, pp. 55–69, 2004.

[11] D. A. Bini, B. Meini, S. Steffé, and B. Van Houdt, “Structured Markov
chains solver: software tools,” in SMCtools Workshop. Pisa, Italy: ACM
Press, 2006.

[12] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-

ods in Stochastic Modeling, ser. ASA-SIAM Series on Statistics and
Applied Probability. Philadelphia, PA: SIAM, 1999.

[13] G. Ciardo and E. Smirni, “ETAQA: an efficient technique for the analysis
of QBD-processes by aggregation,” Performance Evaluation, vol. 36-37,
pp. 71–93, 1999.

[14] D. Bini, G. Latouche, and B. Meini, Numerical Methods for Structured

Markov Chains. Oxford University Press, 2005.
[15] M. F. Neuts, Structured stochastic matrices of M/G/1 type and their

applications. Marcel Dekker Inc., 1989.
[16] V. Ramaswami, “A stable recursion for the steady state vector in Markov

chains of M/G/1 type,” Stochastic Models, vol. 4, pp. 183–188, 1988.
[17] G. H. Golub, S. Nash, and C. Van Loan, “A Hessenberg-Schur method

for the problem AX+XB=C,” IEEE Transactions on Automatic Control,
vol. 24, pp. 909–913, 1979.

[18] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, “Solution of
the Sylvester matrix equation AXBT + CXDT = E,” ACM Transactions
on Mathematical Software, vol. 18, pp. 223–231, 1992.

[19] W. Whitt, “Approximating a point process by a renewal process, I: Two
basic methods,” Operations Research, vol. 30, pp. 125–147, 1982.

[20] A. Heindl, “Inverse characterization of hyperexponential MAP(2)s,” in
Proc. 11th Int. Conference on Analytical and Stochastic Modelling

Techniques and Applications (ASMTA), 2004.
[21] J. E. Diamond and A. S. Alfa, “On approximating higher order MAPs

with MAPs of order two,” Queueing Systems, vol. 34, pp. 269–288,
2000.

[22] P. G. Taylor and B. Van Houdt, “On the dual relationship between
Markov chains of GI/M/1 and M/G/1 type,” submitted to Advances in
Applied Probability, 2009.

[23] S. Asmussen and V. Ramaswami, “Probabilistic interpretations of some
duality results for the matrix paradigms in queueing theory,” Communi-
cations in Statistics Stochastic Models, vol. 6, pp. 715–733, 1990.

[24] L. Bright, “Matrix-analytic methods in applied probability,” Ph.D. dis-
sertation, Department of Applied Mathematics, University of Adelaide,
1996.

[25] V. Ramaswami, “A duality theorem for the matrix paradigms in queueing
theory,” Communications in Statistics Stochastic Models, vol. 6, pp. 151–
161, 1990.

[26] G. H. Golub and C. Van Loan, Matrix Computations. The Johns
Hopkins University Press, 1996.

