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Abstract This paper presents an approach to evaluate the performance of an optical switch
equipped with both limited-range wavelength conversion and Fiber Delay Lines to resolve con-
tention. We propose an analytical model that allows a general behavior for the packet size distri-
bution while the inter-arrival times are assumed to be of Phase-Type and can easily be relaxed to
be generally distributed if needed. As the set of reachable wavelengths is a major issue in limited-
range wavelength conversion, we first focus on a simple wavelength set configuration that allows
the comparison of different policies and their effect on the loss rate of the system. In addition,
a linear association between the loss rate of the simple and a more complex set configuration is
identified. Using this association and the results from the analytical model, we derive an approx-
imation for the more complex case, where the interactions among adjacent wavelengths play an
important role. The approximation works well for different parameter instances and is particularly
useful for the mid load case, when simulations become computationally prohibitive.

Key words Optical Switching – Fiber Delay Lines – Limited-Range Wavelength Conversion –
Performance Evaluation

1 Introduction

Optical fibers are able to transmit a huge amount of traffic using Wavelength Division Multiplex-
ing (WDM) as it allows a single fiber to carry several signals in different wavelengths. In contrast
electromagnetic switches require opto-electronic translations that generate additional delays turn-
ing these devices into the bottleneck of the network. Packet switching technologies, such as Optical
Burst Switching (OBS) [14,19], have been introduced to avoid these translations by processing
the main part of the signal in the optical domain. As contention may arise in this domain, two
alternatives have been proposed: wavelength conversion and optical buffering. The former is done
through wavelength converters that allow a packet to be transmitted via a different wavelength
than the one it used to enter the switch. A converter may be equipped with full or limited-range
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2 Juan F. Pérez, Benny Van Houdt

wavelength conversion depending on whether it is able to translate a signal to any wavelength or
to a restricted subset of them. On the other hand optical buffering is implemented using a set of
Fiber Delay Lines (FDL) that delay an incoming packet for a specific amount of time proportional
to the length of the fiber.

The effect of wavelength conversion without buffering was studied in [1], while the behavior
of FDLs in a switch without converters, i.e., in a single wavelength switch, was treated in [8,9,
20]. Introducing FDLs in a multi-wavelength switch drastically increases the complexity of the
system and its analysis. Hence, simulation models have been used to analyze the interaction of
both solutions for the case of full range wavelength conversion [3,4,6]. An approximation based
on an analytical model with a Round-Robin discipline, that relies on the solution of a single
wavelength system, is presented in [16]. It is shown to work reasonably well for a fixed packet size
when the minimum horizon allocation policy is used. However, the approximations are very poor
for other policies and packet lengths. Furthermore, limited-range wavelength conversion usually
implies a more intricate interaction between adjacent wavelengths. This topic has been considered
in [2,5,13] for the bufferless case relying on (approximate) analytical models. More precisely, for
exponential packet sizes, the lack of buffers allows an exact solution for the full range conversion
case. This result is used to approximate the performance of the limited-range system. With the
exception of the aforementioned approximation in [16], no other analytical models including both
buffering and wavelength conversion have been developed so far.

In this work we focus on the performance analysis of an optical switch that uses both limited-
range wavelength conversion and FDLs to resolve contention. The inclusion of FDLs allows the
switch to delay those packets that cannot be transmitted immediately. Given the restriction in
the wavelength range in which an incoming packet can be converted, even a few FDLs help to
significantly reduce packet losses by exploiting the time domain. This will become clear from the
numerical results presented in Sections 4 and 5. In order to study the performance of this system,
we propose an analytical model that allows a general behavior for the packet size distribution,
while the inter-arrival times are assumed to be of Phase-Type, a class of distributions that allows
a wide variety of behaviors. As indicated in Section 3.5, this assumption can be relaxed to allow
for general inter-arrival times. In our model the whole set of wavelengths is partitioned in smaller
subsets that can be analyzed separately. With this simpler configuration we study the effect of
different wavelength allocation policies on the packet loss rate. With the results from the model
we propose an approximation for the complex limited-range system. The approximation is based
on a linear association we found among the number of losses in the simpler and the more complex
systems. This approach works well for different configurations and is particularly useful for the
mid load case, when simulations become computationally expensive.

This paper is organized as follows: in Section 2 we present the general configuration of the
switch and the different wavelength allocation policies; Section 3 describes the analytical model
for the simpler case, while Section 4 reports several results about the effect of the policies and
other parameters in the performance of the switch. Section 5 presents the approximation for the
more complex case as well as results related to its behavior. Finally we draw some conclusions in
Section 6.

2 Optical switch

The optical switch analyzed in this work has a set of K input and output ports, as shown in
Figure 1. Packets arrive and leave the switch through any of the W wavelengths in each port. A
set of converters is attached to each input port, while each output port has its own set of FDLs,
in a similar fashion as the space switch described in [12, Chapter 10]. We assume the switch has
a synchronous operation, making the switching matrix design simpler [4]. Nevertheless, this kind
of operation requires packet synchronization and alignment, increasing the complexity of its im-
plementation [1,4]. On the other hand, an asynchronous switch does not require synchronization
nor alignment, but its switching matrix is more complex. A common assumption in slotted syn-
chronous networks is that the packet size is fixed and equal to the time slot. As explained in [3],
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this means that a packet with a size larger than the time slot must be divided in segments that
fit in a slot, including a header for each segment. If variable packet sizes are however allowed in
a synchronous switch, only the first segment requires a header, reducing the amount of header
processing, a critical issue in optical switching [3].
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Figure 1 Switch architecture with K input/output fibers, W wavelengths, converters and FDLs

We assume that the traffic destined for each output port is independent from the other ports.
Thus we can evaluate the performance of a single port since all of them behave in a similar fashion.
When a packet is destined to a specific output port, it comes through one of the W wavelengths
(on one of the input ports). If the system provides full-range wavelength conversion, the packet
can be converted to any of the other wavelengths without restriction. Nevertheless, wavelength
converters can perform slower when trying to convert over a wide range of wavelengths [18]. To
avoid this behavior, the converters may be designed to have limited-range wavelength conversion,
that is, they are only able to convert to a specific set of output wavelengths [21]. This set is usually
made of the home and some adjacent wavelengths [17]. Thus the wavelength allocation problem
is to determine the wavelength that the incoming packet must use for transmission among those
that are reachable from the home wavelength [3].

The selection of a wavelength for transmission depends on the state of each wavelength in
the reachable set. The state of any wavelength can be described by the delay that the arriving
packet must face before effective transmission (if it decides to use this particular wavelength and
assuming we had a RAM buffer). Because of the lack of random access memory in the optical
domain, FDLs have been proposed to allow buffering for contention resolution. An FDL buffer
is made of N fibers, each holding W wavelengths. Each of these fibers allows a particular delay
which is a multiple of the basic time slot. We assume that the delays are linearly increasing with
granularity D. This means that the first FDL provides a delay equal to D time slots, the second
one allows a delay equal to 2D, while the last FDL delays the packet for ND time slots.

As can be seen, the optical buffer is not able to provide every required delay, but only multiples
of the granularity D, a parameter that becomes relevant for buffer design. Furthermore, if the
delay required to transmit the incoming packet exceeds ND, the maximum allowable delay, on
all wavelengths, the packet must be dropped. Notice, an FDL buffer creates gaps in the channel
whenever a packet faces a delay that is not a multiple of D (on the selected wavelength). In this
work we do not consider a gap filling strategy as its implementation may be too expensive. These
gaps have a relevant influence in the switch performance since the channel will be idle for several
intervals even when some packets are waiting for transmission in the FDL. Therefore when a
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packet is allocated to a particular wavelength, this choice implies both the delay that the packet
must face and the gap that it creates on the channel [4].

For the case of limited-range wavelength conversion, the wavelength allocation decision is made
over the restricted set of reachable wavelengths. We consider two different alternatives to compose
this set:

– Symmetric set: the output set includes the home wavelength and d wavelengths on either side of
it [21]. This gives a set of variable size, depending on the position of the home wavelength. For
those wavelengths that are at least d positions separated from the first and the last wavelength
the set is of size 2d + 1. For the wavelengths on the borders the output set has a size of d + 1
only. In general, if the wavelengths are numbered from 1 to W , where the first and the last are
the borders, the output set of wavelength i is

{max{i − d, 1},max{i − d + 1, 1}, . . . , i, . . . min{i + d − 1,W},min{i + d,W}} ,

for i = 1, . . . ,W . The parameter d is called degree of conversion [13].
– Fixed set: in this case the set of wavelengths is partitioned, such that a packet can only be

forwarded through the wavelengths that belong to the same partition as its home wavelength.
The partition is assumed to be built by adjacent wavelengths since the converters perform
faster for a small range of wavelengths.

Once the output set is determined, the selection of the wavelength used for transmission can be
made in several ways:

– Random (Random): the wavelength used to transmit the packet is selected randomly among
those in the output set where the required delay is not greater than ND [13].

– Minimum Horizon (MinH ): the packet is sent through the wavelength that offers the minimum
scheduling horizon, i.e., the one where the delay before transmission is minimum.

– Minimum Gap (MinGap): the wavelength selected for transmission is such that the gap created
by the scheduling of the packet is minimum among the set of output wavelengths.

The two latter scheduling policies have been studied in [3,4] for the case of full-range wavelength
conversion using simulation models. It must be noted that in those works, as well as here, we
assume that whenever a conversion is required, a converter will be available to perform it. The
case when there are fewer converters than wavelengths has been studied in [1,6] assuming full-range
wavelength conversion and in [2,5,13] for the bufferless limited range wavelength conversion case.
In the next section we present a model for the analysis of the case where the set of wavelengths is
fixed and the wavelength is selected using the MinH or MinGap policies.

3 Analytical model for two wavelengths

In this section we assume that the W wavelengths are partitioned in W
2 subsets each of size 2.

In principle, the model can be generalized to a partitioning with W
k

subsets each of size k, with
k being a divisor of W . Nevertheless we will restrict ourselves to the two wavelengths case to
limit the computation times. Indeed, the size of the model for realistic parameter values is a key
issue since the state space grows exponentially if k is chosen larger than two. Nevertheless, the
two wavelength case captures to some extent the benefits of having multiple wavelengths since it
includes the effect of the wavelength allocation policy. A first approach to model the system can
be made by generalizing the horizon model presented in [9,20] for the single-wavelength buffer. In
this case, each wavelength is represented by the scheduling horizon seen by the incoming packet,
that is, the time required until all packets scheduled on this wavelength have left the system. If
this horizon is greater than ND, the maximum achievable delay, on all wavelengths, the packet
is dropped. Even for the case with two wavelengths this approach becomes problematic in terms
of the required computation times for realistic parameter values. Another approach is the one
proposed in [15], where the state variable is the waiting time of the last accepted packet, using
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a modified version of the Lindley equation. Although this method provides a much smaller state
space, it is only directly applicable for the single-wavelength system.

In order to keep the model size numerically tractable, we propose a model that mixes the
two approaches mentioned above by observing the system only when an incoming packet is ac-
cepted. Whenever a packet arrives to the FDL it is accepted for transmission if at least one of
the wavelengths is able to delay the packet until this wavelength becomes idle. Thus, the system
can be represented with two state variables: Wn, the waiting time of the n-th accepted packet, for
n ≥ 1; and Hn, the value of the scheduling horizon of the wavelength that did not admit the n-th
accepted packet at its arrival, for n ≥ 1. As the FDL only provides delays that are multiples of
D, the waiting time Wn only takes values in the set {0,D, 2D, . . . , ND}. The cardinality of this
set is much smaller than that of the scheduling horizon Hn, since this variable can adopt values
in the set {0, 1, 2, . . . , ND + Bmax − 1}, where Bmax is the maximum packet size.

For the policies studied later, the sequence {{Wn,Hn}, n ≥ 1} is a Markov chain as will be
clear from the evolution equations in each case. With the combination of the waiting time and
the scheduling horizon as state variables, the state space is much smaller than keeping track of
both horizons as state variables. Moreover the state space of the combined variables is not equal
to the cartesian product of the sets described above since many of the possible combinations
are not reachable. In fact the reachable state space highly depends on the wavelength allocation
policy. It is important to remark that the same modeling approach can be used for k > 2. This
representation would require one delay variable and k − 1 horizon variables, resulting in a huge
state space even for k = 3.

The packet arrival process is characterized through two sequences of i.i.d. random variables:
{Tn, n ≥ 1} is the time between the arrival of the n-th packet and the next one; and {Bn, n ≥ 1}
is the size of the n-th packet. In this work we assume that {Bn, n ≥ 1} follows a general discrete
distribution with finite support and {Tn, n ≥ 1} follows a discrete Phase-Type (DPH) distribution
with parameters (β,S), an assumption easily relaxed to admit any general discrete distribution
as well (see Section 3.5).

A DPH variable X can be defined as the time until absorption in a Discrete Time Markov
Chain with one absorbing state and all others transient [7]. By partitioning the state space leaving
the absorbing state apart, the transition matrix P and the initial probability vector γ can be
written as

P =

[

1 0

s S

]

and γ =
[

β0 β
]

.

Since the sum of the elements on each row of P must be equal to one, s is determined by s = 1−S1,
where 1 is a column vector of appropriate dimension with all its entries equal to one. The same
argument applies for the initial distribution to specify β0 as β0 = 1 − β1. Therefore a DPH
representing the time until absorption in P with initial distribution γ is completely determined by
the parameters (β,S). Distributions of this class can represent any probability distribution with
finite support on N and also include many distributions with countable support as special cases,
such as the geometric and negative binomial. For a comprehensive treatment of DPH distributions
see [11] and [7]. Throughout this paper we assume that β0 = 0, meaning we do not allow batch
arrivals.

We assume that the incoming wavelengths of the arrivals destined to a tagged output fiber
are uniformly distributed among all the wavelengths. Thus the arrival process to a fixed set of
two wavelengths is a thinned DPH arrival process, since with probability 2

W
a packet comes

through one of the wavelengths in the set. With this assumption the set of two wavelengths can
be analyzed in isolation and the inter-arrival times to it can be described as a sequence of i.i.d.
variables {In, n ≥ 1} that follows a DPH distribution with parameters (α,T ), with α = β and

T = S +

(

1 −
2

W

)

sβ.

Even though we exploit the flexibility of DPH distributions for the inter-arrival times, it is impor-
tant to note that the state space size is independent of the number of phases of the DPH variable.
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This becomes clear in the next subsections where we present the evolution equations of the system,
depending on the rule used for the wavelength selection.

3.1 Minimum Horizon policy

When the next packet arrives after the n-th accepted packet, it will find that the horizons of the
wavelengths are equal to [Hn − In]+ and [Wn + Bn − In]+, where [x]+ stands for max(x, 0). If
at least one of these horizons is less than or equal to ND, the packet will be accepted in the
wavelength with the minimum horizon value. Thus the waiting time of the arriving packet will be
given by the horizon of the selected wavelength rounded to the smallest multiple of D (larger than
or equal to its horizon value). The horizon value of the other wavelength will remain identical.
The evolution equations that describe this process are

Hn+1 = max{[Hn − In]+, [Wn + Bn − In]+} (1)

Wn+1 =

⌈

min{[Hn − In]+, [Wn + Bn − In]+}

D

⌉

D. (2)

If the arriving packet sees that both horizons are above ND, the maximum delay capacity of
the FDL, the packet must be dropped. In that case the evolution of the system is given by

Hn+1 = max{[Hn − Ĩn]+, [Wn + Bn − Ĩn]+}

Wn+1 =

⌈

min{[Hn − Ĩn]+, [Wn + Bn − Ĩn]+}

D

⌉

D,

where Ĩn is the time until the next accepted packet, which has a different distribution than In, as
will be explained in subsection 3.3.

3.2 Minimum Gap policy

Under the MinGap policy the incoming packet is assigned to the wavelength in which the gap
generated by accepting the packet is minimum, in case both wavelengths are able to accept the
incoming packet. Let G1

n be the gap generated if the packet is accepted by the wavelength that
did not accept the last packet, that is given by

G1
n =

⌈

[Hn − In]+

D

⌉

D − [Hn − In]+.

Equivalently, let G2
n be the gap generated if the packet is accepted by the wavelength used by the

previous accepted packet, that is

G2
n =

⌈

[Wn + Bn − In]+

D

⌉

D − [Wn + Bn − In]+.

If G1
n < G2

n then the packet will be sent to the wavelength that did not receive the last packet,
causing the new values of the state variables to be

Hn+1 = [Wn + Bn − In]+

Wn+1 =

⌈

[Hn − In]+

D

⌉

D.

If G1
n > G2

n the packet will be sent to the wavelength that was also used by the previous accepted
packet, making the variables evolve as

Hn+1 = [Hn − In]+

Wn+1 =

⌈

[Wn + Bn − In]+

D

⌉

D.
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In case both potential gaps have the same value or if only one of the wavelengths is able to
receive the packet, the evolution follows Equations (1) and (2). If the next arriving packet has
to be dropped due to the value of the horizons (both above ND) the evolution will follow the
same equations already shown in this section, but using variable Ĩn instead of In to describe the
time until the next accepted packet. The distribution of this variable is addressed in the next
subsection.

3.3 Distribution of the time until the next accepted packet

As was defined above, the inter-arrival times In can be described by i.i.d. DPH variables with
parameters (α,T ). This implies that the arrival process is a DPH renewal process with renewal
density r(·) given by

r(k) = α(T + tα)k−1t, k ≥ 1. (3)

The density r(k) gives the probability of having an arrival at slot n + k given an arrival in slot n

(either with or without arrivals in between). When the system is in state (Wn,Hn) it may not be
able to accept a packet arriving in the next time slot, i.e., min{Hn,Wn +Bn}−1 > ND, in which
case we use a different inter-arrival distribution to take into account the period of time in which
the channel is unavailable. For this we first define Kn = min{Hn,Wn + Bn} − ND − 1 as the
number of slots required by the system to have a horizon equal to ND after the arrival of the n-th
accepted packet. Using this quantity and Equation (3) we can define the probability distribution
of the time until the arrival of the next accepted packet Ĩn as

P (Ĩn = k) = α(T + tα)Kn−1T k−Knt, k ≥ Kn.

In this expression the arrival process restarts after the arrival of the last admitted packet. A new
phase is selected with probability mass α. Then the system enters an unavailability period of
length Kn − 1 where every arriving packet is dropped. This period is followed by k − Kn slots
without arrivals, after which the arrival process goes to absorption generating an arrival in the
next time slot.

3.4 Loss rate

As the model only keeps track of the accepted packets, the loss rate (LR) can be computed from
the expected number of losses generated when a new packet is accepted. The expected losses
generated by the last admitted packet is computed as a weighted sum of the expected loss in
each state with the stationary probability distribution as the weights. In a state where Wn = W ,
Hn = H and the last accepted packet was of size B, the expected number of losses is equal to the
expected number of arrivals in a time interval of length [min{W + B,H}−ND − 1]+. This value
represents the number of time slots required by the FDL before it is able to accept a new packet.

The expected number of arrivals (A) in a time interval of length L, denoted by E[A|L], depends
on the inter-arrival distribution. For the case of geometric inter-arrival times with parameter p,
the expected number of arrivals is the expected value of a binomial distribution with parameters
p and L: pL. For the case of DPH inter-arrival times, we make use of the renewal density r(k),
defined in Equation (3). As r(k) is the probability of an arrival at slot k for k ≥ 1, the expected
number of arrivals in an interval of length L can be computed as

E[A|L] =

L
∑

l=1

r(l) =

L
∑

l=1

α(T + tα)l−1t = α(I − (T + tα)L)(I − (T + tα))−1t, (4)

where α and T are the parameters of the DPH distribution.
Let πij be the stationary probability distribution that an arbitrary accepted packet had to wait

i time slots and the scheduling horizon of the wavelength that did not admit that packet is equal
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to j, for all possible combinations (i, j) in the state space Ω. Also let Ξ be the support of the
sequence {Bn, n ≥ 1}, and bk be the probability mass at point k, for k ∈ Ξ. Then the expected
number of losses generated by the last accepted packet is given by

E[Loss] =
∑

(i,j)∈Ω

πij

∑

k∈Ξ

bkE[A|[min{i + k, j} − ND − 1]+]

=
∑

(i,j)∈Ω

πij

∑

k∈Ξ

bk

[min{i+k,j}−ND−1]+
∑

l=1

α(T + tα)l−1t.

Finally, as every accepted packet generates on average a number of losses equal to E[Loss], the
loss rate of the system is given by

LR =
E[Loss]

E[Loss] + 1
.

3.5 General inter-arrival times

The case of general inter-arrival times can be dealt with in the same way as described above for
the DPH case. Let f be the probability mass function of the inter-arrival times. By conditioning
on the last arrival before slot k, the renewal density can be defined as

r(k) = f(k) +

k−1
∑

j=1

f(j)r(k − j), k ≥ 1. (5)

This function can be recursively evaluated for any finite k starting with r(1) = f(1). Using the
renewal density, the distribution of the time until the arrival of the next accepted packet is given
by

P (Ĩn = k) = f(k) +

Kn−1
∑

j=1

f(k − j)r(j), k ≥ Kn.

This expression accounts for an unavailability period of length Kn−1, after which the next packet
arrives at time k. Finally the computation of the LR only requires the determination of the expected
value of arrivals in an interval of arbitrary length L, defined above as E[A|L]. This can be done in a

similar way as in Equation (4), by simply summing the values of the density: E[A|L] =
∑L

l=1 r(l).
Using this setting it is possible to deal with general inter-arrival times. However, from a practical
point of view, the general process offers little additional value, as the DPH class includes any
general distribution with finite support.

4 Comparison among policies

In this section we present several results about the performance of the switch with a fixed output
set, the size of which is 2 wavelengths. This configuration allows numerical tractability of the
model described in the previous section while giving insight about the behavior of the switch under
different policies. Here we compare the three policies introduced in Section 2: Random, MinH and
MinGap. The comparison is always done in terms of the LR as a function of the granularity, since
the former is the main measure of performance and the latter is the most critical design parameter
for the FDL buffer. Regarding the other parameters, all the results are for a switch with 32
wavelengths with a load ranging from 50% to 80%. The number of FDLs varies from 1 to 7, since
the length of the longest fiber must be kept short enough to be implementable. For the packet size
we use three different distributions: the first one assumes a fixed packet size equal to 30 slots; the
second has two equiprobable values: 10 and 50 slots; and the third one is a uniform distribution
between 20 and 40 slots. We use two different inter-arrival distributions for the comparisons: one
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is the simple geometric distribution, while the other is a mixture of geometric distributions. The
probability mass function of a geometric random variable X with parameter p is given by

P (X = k) = (1 − p)k−1p, k ∈ {1, 2, . . . },

while the one of a random variable Y representing the mixture of two geometric variables with
parameters p1 and p2 is given by

P (Y = k) = α1(1 − p1)
k−1p1 + α2(1 − p2)

k−1p2, k ∈ {1, 2, . . . },

where α1 and α2 are the mixing probabilities. We use this distribution to analyze the case of highly
variable inter-arrival times by setting the squared coefficient of variation (SCV) equal to 5.

It should be clear that the set of possible combinations of parameter values is too large to
be presented exhaustively. Therefore we concentrate separately on the effect of each of these
parameters on the performance of the switch. In Figure 2 we show the switch LR under the three
policies, fixing the number of FDLs equal to 5 and varying the load from 50% to 80%. In Figure 3
the load is equal to 60%, while the number of FDLs increases from 1 to 7. In both cases the inter-
arrival times follow a geometric distribution. From the figures the performance gain obtained by
using MinH or MinGap over the Random policy is evident. Although the output set is made only
of 2 wavelengths, the use of the information about the state of the buffer results in a significant
reduction in the number of losses. In particular, MinGap shows a consistent better performance
than the other policies, and the optimal granularity is close to the value of the packet size. The
difference among the minimum LRs reached by the policies diminishes as the load increases, but
the optimal granularity is more robust for the MinGap policy than for the others. Therefore this
policy attains the minimum LR over a broad range of loads with the same granularity. From Figure
3 the effect of the number of FDLs becomes clear. In all cases, MinH and MinGap outperform
the simpler Random policy, but the differences become more evident as the number of FDLs
increases. Particularly the MinGap policy realizes an important performance difference since it
better exploits the buffering resources, while an increasing number of FDLs implies a larger set of
alternatives for buffering.
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Figure 2 Loss Rate for Fixed Output Set with W = 32, B = 30, N = 5 and geometric arrivals
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Figure 3 Loss Rate for Fixed Output Set with W = 32, B = 30, ρ = 0.6 and geometric arrivals
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Figure 4 Loss Rate for Fixed Output Set with W = 32, B = 30, N = 5 and inter-arrival times with SCV
equal to 5

Similar results for the case of a highly variable arrival process can be seen in Figure 4. Also
in this case, when the load increases the shapes of the curves change and the optimal granularity
diminishes in value. Again the MinGap policy shows the best performance and the most robust
behavior in relation to the optimal granularity. When comparing these results with those in Figure
2 it is clear that the curves keep the same shape, but the losses are larger in the more variable case.
For mid loads the difference becomes as large as one order of magnitude, implying an important
effect of the arrival process variability. However the difference between the geometric and the
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high variable cases narrows as the load increases. This means that for high loads the effect of the
inter-arrival SCV is not as important as for the mid load case.
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Figure 5 Loss Rate for Fixed Output Set with W = 32, N = 5 and ρ = 0.6

In Figure 5 we fix both the load and the number of FDLs in order to focus on the effect of
the packet size distribution and the variability of the arrival process. Irrespective of the packet
size distribution, higher variability causes an increase in the losses while the optimal granularity
remains in the same region. For all the scenarios the MinGap policy outperforms the other ones,
but the difference is smaller when the arrival process shows high variability. When the packet size
can take values 10 or 50 with equal probability, the optimal granularity is located around the
larger value, but there is a whole region with a LR close to the optimal. If the packet size follows
a uniform distribution between 20 and 40, the optimal granularity is around the expected value.
Also in this case there is a set of possible values for the granularity with a performance close to
optimal. As the value of the optimal granularity diminishes as the load increases, this parameter
can be chosen such that it performs almost optimally for both mid and high loads.

5 An Approximation for the Symmetric Set

As was described in Section 2, the set of reachable wavelengths in the symmetric case is made of the
adjacent wavelengths and the home wavelength itself. This configuration is particularly difficult to
model analytically since the set of servers (output wavelengths) overlaps for the different queues
(input wavelengths) in the system. Therefore it is not possible to isolate a set of servers and
queues, as was done for the fixed set case, since a set of servers is affected by the queues of the
adjacent servers. Furthermore the packets entering through the first and last wavelengths have less
alternatives since the output set is smaller than for the central wavelengths. In order to analyze this
system we performed several simulations focused on the MinGap policy since this policy performs
the best among those already analyzed. The estimates of the LR were computed using the batch
means method [10] and removing the effect of initial conditions by ignoring the warm-up period.
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The confidence intervals half width is at most 2% of the mean. These simulations become very
expensive when the LR is very small, since the number of events required to compute a good
estimate can be computationally prohibitive.
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Figure 6 Linear relation between the logarithms of the Loss Rates of the Symmetric (d = 1) and the
Fixed output sets

When comparing the results of the simulation for the symmetric system and the analytic
model for the fixed output set, we found that the behavior(shape) of the LR as a function of
the granularity is similar. This holds in particular for the fixed case with output sets of two
wavelengths and the symmetric case with d = 1, for many different configurations. As expected,
the symmetric case outperforms the fixed one by far in terms of the LR. More specifically, we
found a strong linear association between the natural logarithm of the LR for the fixed case and
its symmetric counterpart. This is illustrated in Figure 6 where each point is the combination of
the logarithm of the LR for the fixed case and the same value for the symmetric case. The results
are separated according to the packet size distribution and the scenarios include different values
for the granularity (between 5 and 70), the number of FDLs (from 1 to 5), the load (between 50%
and 90%) and the SCV of the arrival process (geometric case and SCV equal to 5). We include in
each figure the coefficient of linear correlation, which is very high in all cases.

This behavior suggest an approximation based on both the analytical model and on simulations,
which we can apply for the parameters range mentioned above. Let LRf and LRs be the loss rate
for the fixed and the symmetric cases, respectively. Then we can approximate the loss rate in the
symmetric case using the relation LRs = exp {β0 + β1ln(LRf )}. Given a specific configuration
(number of FDLs, load, inter-arrival and packet size distribution) we propose to simulate the
switch for the symmetric case for two different values of the granularity and to estimate the loss
rate as follows. We use the logarithms of the LRs for these two cases (say y1 and y2) and compute
the same results for the fixed case (x1 and x2) to estimate the parameters β0 and β1 of the
approximate linear equation that relates these two quantities. These are given by

β1 =
y1 − y2

x1 − x2
, β0 = y1 − β1x1.

Hence we can approximate the LR for the symmetric case using the LR for the fixed case obtained
with the analytic model and the estimated linear equation. It must be noted that the values of
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the granularity for the simulations are selected such that the LR estimates for the symmetric case
can be computed fast. Even though the simulations are necessary for the proposed approximation,
the time required to compute the approximated LR for the symmetric case is significantly smaller
than simulating the system for each possible value of the granularity. Furthermore this last option
may be infeasible when the LR becomes very small.
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Figure 7 Approximation and simulation of the symmetric output set for W = 32, B = 30 and inter-arrival
times with SCV equal to 5

Figures 7, 8 and 9 show the results of this approximation, one for each packet size distribution
considered in Section 4. All the results in these figures assume an inter-arrival time distribution
with SCV equal to 5, but similar results were obtained for other coefficients of variation and for
the geometric case. To approximate the linear line that relates the logarithms of the LRs we use
the results of the simulation when the granularity is equal to 5 and 10, since for these values a
good estimate of the LR can be obtained fast. As can be seen in Figure 7, the approximation works
adequately for the different configurations shown. The approximation is closer to the actual value
for the case of mid loads and a small number of FDLs. It must be noted that the approximation
is especially useful for the mid load case to avoid prohibitive simulation times to compute a very
small LR. For the case of high loads the approximation becomes somewhat optimistic, a result
that holds for the different packet size distributions, as well as for larger loads than those shown
in this paper.

Among the different configurations we tried, those with a higher variability in the packet
size distribution show the worst performance of the approximation. This is the case in Figure
8, where for loads 50% and 60% the approximation follows the shape of the simulated LR but
around its minimum value the loss is overestimated. For the fixed and uniformly distributed
packet size, not only the shape of the approximation and the simulation agree but also the values
of the approximated LR are very close to those obtained through simulations. Even though this
approximation requires to setup and run simulations, the parameters can be chosen such that
reliable estimates of the LR can be computed in a short run. The method proposed here can then
be used to approximate the value of the LR for those parameter values for which simulation may
be unfeasible. Additionally we have found that the linear relation that supports this approximation
also holds between the LRs of the fixed output set and the symmetric one with d = 2, as can be seen
in Figure 10. Even though the linear correlation is smaller in this case, the approach introduced
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Figure 8 Approximation and simulation of the symmetric output set for W = 32, B = {10, 50} and
inter-arrival times with SCV equal to 5
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Figure 9 Approximation and simulation of the symmetric output set for W = 32, B ∼ Unif(20, 40) and
inter-arrival times with SCV equal to 5

here can still provide a good approximation for the LR in the symmetric case. Extensions to this
work may include a better description of this relation for higher degrees of conversion.

6 Conclusions

In this paper we present an analytical model to evaluate the performance of an optical switch
equipped with FDL buffers dedicated to each output port and limited range wavelength conver-
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Figure 10 Linear relation between the logarithms of the Loss Rates of the Symmetric (d = 2) and the
Fixed output sets

sion. The model is particularly well suited for the case of a small fixed output set. The model
allows the inclusion of a general arrival process as the inter-arrival times are assumed to follow a
DPH distribution. The packet size distribution is assumed to be generally distributed. The model
is limited by the state space size to be numerically tractable, but captures the dynamics that
wavelength conversion offers.

With this model we study the impact of different policies in the performance of the switch.
In particular, we compared the case when the MinH and the MinGap policies are implemented
instead of the Random decision rule. Despite the limited-range conversion, we found that any of the
first policies outperforms the latter for all the different configurations tried. Furthermore we found
that the MinGap policy makes better use of the buffering resources as it performs better than
MinH and this difference becomes larger as the number of FDLs increases. In general, MinGap

shows a more stable behavior of the optimal granularity, while for the others this value changes
rapidly with the load. When the load increases, the differences between the policies are smaller,
but MinGap still performs better than MinH.

We then proposed an approximation for the symmetric output set based on the analytical
model for the fixed case. As the symmetric setting is much harder to examine analytically, our
approximation makes use of the linear association between the logarithms of the LRs of the
fixed and the symmetric setups. Results for the latter were obtained using simulation. The linear
equation for a particular configuration of the parameters is approximated by selecting two different
granularities and computing the LR for the fixed and the symmetric output sets. With this equation
and the results for the fixed case the LR for the symmetric case can be approximated. The results
for different values of the parameters show that the approximation behaves adequately. It works
particularly well for the case of mid loads and low variability of the packet size.
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