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Abstract—In this paper we introduce a mean field model
to analyze an optical switch equipped with both wavelength
converters (WCs) and fiber delay lines (FDLs) to resolve con-
tention in OBS networks. Under some very general conditions,
that is, a general burst size distribution and any Markovian
burst arrival process at each wavelength, this model determines
the minimum number of WCs required to achieve a zero loss
rate as the number of wavelengths becomes large. The mean
field result is exact as the number of wavelengths goes to
infinity and turns out to be very accurate for systems with
(a few) hundred wavelengths, commonly occurring when using
wavelength division multiplexing (WDM). Moreover, we show
that if the number of WCs is underdimensioned, (i) periodic
system behavior may occur (with the period being the greatest
common divisor of the burst lengths) and (ii) increasing the
number of WCs may even worsen the loss rate under the often
studied minimum horizon allocation policy (as opposed to the
minimum gap policy). Finally, we further demonstrate that in
terms of the loss rate, including (more) FDLs may have little or
no effect on the number of WCs required to achieve a near-zero
loss, especially for higher loads.

I. INTRODUCTION

Optical burst switching (OBS) has been proposed as a

solution to minimize the opto-electronic translations at the

backbone network switches [1], [2]. As only the burst header

requires this translation, the main part of the signal can

be processed in the optical domain. In consequence, OBS

enables the switches to catch up with the growing transmission

capacity of the optical fibers, driven by wavelength division

multiplexing (WDM). With WDM several signals can be sent

at the same time using different wavelengths, increasing the

fiber capacity by tens or hundreds. As the main part of the

signal is processed in the optical domain, contention can be

resolved using wavelength conversion or optical buffering.

A wavelength converter allows an incoming burst to use a

different wavelength for transmission if the one it used to enter

the switch is unavailable. On the other hand, optical buffering

is implemented using Fiber Delay Lines (FDLs) that allow an

incoming packet to be delayed for a specific amount of time

proportional to the length of each fiber.

a) Our Contribution: In this work we introduce a mean

field model of an optical switch equipped with a pool of full-

range wavelength converters and a set of FDLs per output

port. The mean field model is exact when the number of

wavelengths tends to infinity, while it is shown to be very

accurate when compared to a finite system with a large number

of wavelengths. This case is particularly relevant as WDM

technology has increased the number of signals that a single

fiber can carry to more than a hundred. Our model allows a

general burst size distribution while the burst arrival process

at each wavelength is modeled as a Markovian arrival process

(MAP) [3]. This process is able to represent general correlated

inter-arrival times. In order to select a wavelength for a specific

incoming burst we consider two different allocation policies,

the minimum horizon and minimum gap policies, as explained

in Section II.

As the loss rate in an Erlang loss model decreases to zero

as the number of servers becomes large, it is clear that a near-

zero loss rate can be realized for WDM links with hundreds

of wavelengths provided that there are plenty of wavelength

converters (WCs) available. On the other hand, as switches

with a high number of WCs are not very cost effective, limiting

their numbers is important. Therefore, in switches with partial

wavelength conversion, one typically has only C = σW
converters, with σ ∈ (0, 1) and W the number of wavelengths.

Some important questions that arise are: (i) how to determine

σ to achieve a near-zero loss and (ii) how is σ affected by the

presence of FDLs. The main new insights gathered from the

mean field model can be summarized as follows:

1) The mean field model allows us to determine σ in the

general setting defined above (using only a single run).

2) If the number of WCs is underdimensioned, meaning

σ is selected too small, periodic system behavior may

occur, which is a very unwanted effect in any system.

The period seems to equal the greatest common divisor

of the burst lengths.

3) Moreover, if the number of WCs is too small, increasing

the number of WCs may even worsen the loss rate under



the minimum horizon policy (which aims at minimizing

the burst delays). This is not the case when the minimum

gap policy is used.

4) The number of FDLs in the system may have little or

no effect on the required σ, meaning if the number

of WCs is sufficiently large, there might be no use in

incorporating FDLs (as far as the loss rate is concerned).

5) Even if the number of WCs is insufficient, increasing

the number of FDLs may not improve the loss rate.

Moreover, higher loads tend to decrease the usefulness

of incorporating FDL buffers.

To the best of our knowledge, each of these conclusions is

novel and of significant importance when designing optical

switches with partial wavelength conversion and FDLs.

b) Related work: In previous studies analytical models

have been used to evaluate the effect of wavelength conversion

on a bufferless switch [4], [5], and to examine the performance

of a switch equipped with FDLs but without converters [6]–

[8]. The interaction of both wavelength conversion and FDLs

has been analyzed by means of simulation models only in

[9]–[11]. In these studies, as well as in the present paper, the

converters are assumed to have full-range conversion, i.e., a

burst can be converted to any wavelength. The case where the

bursts can only be converted to a restricted set of wavelengths

has been treated in [12]–[15].

This paper is organized as follows: in Section II we present

the switch under analysis and the wavelength allocation poli-

cies; Section III gives a general description of the mean field

model, while Section IV compares the results of the model

with results from the simulation of a finite system. This section

also analyzes the effect of the allocation policies and of various

parameters on the performance of the switch.

II. THE OPTICAL SWITCH

The optical switch under analysis, shown in Figure 1, is

made of a number of input/output ports, each one connected

to a fiber with W wavelengths. The switch works in a

synchronous manner, where the time is divided in equally-

spaced slots and the state of the switch is observed at slot

boundaries. The arrival process at each wavelength is modeled

as a MAP [3] characterized by the set of m × m matrices

{B0, B1, . . . , BLmax
}, where Lmax is the maximum packet

length (the terms packet and burst are used interchangeably).

The MAP is driven by an underlying Markov chain with

transition matrix B =
∑Lmax

k=0 Bk. For k ≥ 1, the entry (i, j) of

the matrix Bk is the probability that a packet of size k arrives

and the underlying Markov chain makes a transition from i
to j. Correspondingly, B0 contains the transition probabilities

of the underlying chain involving no arrivals. The class of

MAP processes has been previously used to model the arrival

process at a bufferless optical switch [4]. When a burst arrives

it is switched to the corresponding output port using its own

wavelength, called home wavelength. If the home wavelength

is available for transmission in the output port, the burst

starts transmission immediately. If the wavelength is already

transmitting another burst or has scheduled the transmission
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Figure 1. Optical switch with K input/output ports, W wavelengths,
converters and FDLs

of a burst waiting in the FDL, the new packet is buffered

using the FDL. In case the FDL has no available buffering

capacity in that wavelength, the incoming burst is converted

to a different wavelength using one of the available converters.

If there are no idle converters or no wavelengths with available

buffering capacity, the burst must be dropped. Thus, to resolve

contention the switch first tries to buffer the signal and only

if this is not possible it tries to convert it, aiming to minimize

the converter usage, as the minConv strategy in [11].

To analyze the performance of the switch we can focus on

a single output port as the incoming traffic is assumed to be

uniformly distributed among the output ports. To describe the

state of one of these ports we consider two types of objects:

wavelengths and converters. The state of a single wavelength

is described by the scheduling horizon, which is the time

until all the packets already scheduled for transmission in that

wavelength have left the switch. If the horizon is equal to 0 and

a packet of size L arrives, it can start transmission immediately

and the horizon increases to L. On the other hand, if the

incoming burst finds a horizon equal to h, it will experience

a delay of at least h units before actual transmission. As the

buffering is carried out by a set of N FDLs, the possible delay

a packet can experience depends on the length of these delay

lines. Here we assume the N FDLs have linearly growing

length with granularity D, i.e., the first line provides a delay

of D time slots, the delay in the second is equal to 2D, and

the last line delays the packet for ND slots. With this setup

an incoming packet that observes a scheduling horizon equal

to h has to wait for D
⌈

h
D

⌉

slots, if h ≤ ND. If the packet is

of size L the new value of the horizon is D
⌈

h
D

⌉

+ L. Notice,

in this particular case the wavelength remains unused for a

length of D
⌈

h
D

⌉

− h just prior to the packet transmission,

we refer to this as a gap. If h is greater than ND the packet

cannot be buffered in the FDL using the same wavelength and

it must be reallocated to another wavelength with horizon less

than or equal to ND.

A packet that cannot be buffered in its home wavelength,

called an extra-packet, can be reallocated if there is both

a wavelength with scheduling horizon no greater than ND
and an available converter. Hence, it is necessary to check



the state of all the wavelengths and the converters. There

are C converters per output port and the state of a single

converter is also described by its scheduling horizon. In this

case the converter has no buffering capacity, therefore its

horizon reduces to the time required by the packet already

in service to be completely converted to the other wavelength.

Then, if an extra-packet of size L finds an available converter

(and there is a wavelength with available buffering capacity)

the horizon of the selected converter changes its value from

0 to L. Naturally, when this conversion occurs the horizon

of the wavelength that receives the burst increases its value

as described previously. An important assumption is that each

wavelength with available buffering capacity can only receive

one extra-packet during one slot, even if it has enough free

FDLs to receive more than one additional packet. Removing

this assumption would complicate both the possible set of

wavelength allocation policies and its corresponding modeling

aspects. The number of converters C per output port is

determined as a fraction of the number of wavelengths W ,

i.e., C = σW , where σ is the conversion ratio. If σ = 0
(resp. σ = 1) the switch is said to have null (resp. full)

conversion. Here we assume that σ takes values between 0 and

1, which is called partial conversion. If an extra-packet finds

an idle converter it has to choose a wavelength among those

with horizon less than or equal to ND. This selection can be

made using two different allocation policies: minimum horizon

(minH), which selects the wavelength with the minimum

scheduling horizon; and minimum gap (minG), which selects

the wavelength with a horizon such that the allocation of a

new packet generates a gap of minimum value.

III. THE MEAN FIELD MODEL

To model the evolution of the switch in a single slot

we consider the following order of events: first, the busy

wavelengths (resp. converters) transmit (resp. translate) part of

the packet in service, reducing their horizons by one. Second,

a new packet may arrive at each wavelength with a probability

related to the phase of its arrival process; the packet is buffered

if there is space available in its home wavelength, otherwise

it becomes part of the set of extra-packets. Third, the extra-

packets are converted to a different wavelength with available

buffering capacity. Any extra-packet that does not find an

available converter or a wavelength with buffering capacity

must be dropped. The probability that a packet is dropped is

called loss probability and is considered the main measure of

performance.

Our model is based on a general result for a system

of interacting objects introduced in [16]. In this case, the

system consists of two types of objects: wavelengths and

converters. Their evolution during a time slot is described by

the matrices associated to each of the three steps: transmission

(Sk), arrivals (Ak) and reallocation (Qk). The subscript k
may be equal to w or c depending on whether the matrix

describes the transition of a wavelength or a converter. A

thorough description of these matrices can be found in [17].

Even though Sk and Ak can be defined independently for

each wavelength or converter, the reallocation matrices Qk

clearly depend on the state of the whole system. To consider

this we observe the system just before the reallocation step.

The state of an individual wavelength includes its horizon, the

phase of the arrival process, and the size of the extra-packet

(if there is one). This information can be compactly held in

a vector MW,(w)(t), whose components store the proportion

of wavelengths in each state in slot t. Analogously, the vector

MW,(c)(t) can be defined to hold the proportion of converters

in each possible state (scheduling horizon) before reallocation

in slot t. Therefore, the state of the complete system at time

t can be described by the vector

MW (t) =

[

1

1 + σ
MW,(w)(t),

σ

1 + σ
MW,(c)(t)

]

,

which is called the occupancy vector and contains the fraction

of objects in each state, including both wavelengths and

converters. Based on this vector, we can define the transition

matrices Qw(MW (t)) and Qc(M
W (t)) for the reallocation

step, whose characterization depends on the allocation policy

[17]. The evolution of a wavelength or a converter can be

described as a discrete-time Markov chain (DTMC) with

transition matrix

KW
k (MW (t)) = Qk(MW (t))Sk Ak, k ∈ {w, c}.

We now combine these two matrices into KW (MW (t)) to

describe the evolution of a single object, which can be

a wavelength or a converter, as a DTMC with two non-

communicating classes

KW (MW (t)) =

[

KW
w (MW (t)) 0

0 KW
c (MW (t))

]

.

To compute MW (t) when W is large we rely on [16],

where it is shown that, under some mild conditions, a system

of interacting objects converges to its mean field when the

number of objects is large. The mean field is a time-dependent

deterministic system that can be used to approximate the

behavior of a system with a large number of objects. Those

conditions are valid for our model [17] and therefore we can

approximate the evolution of the system via the mean field,

which is described by the vector µ(t), for t ≥ 0, and the kernel

K(·) = KW (·). The vector µ(0) is initialized to describe an

empty system and it evolves as µ(t+1) = µ(t)K(µ(t)). Then,

by [16, Theorem 4.1], for any fixed time t, almost surely,

limW→∞ MW (t) = µ(t).
Using the mean field model we can compute the state of the

system at time t by performing t vector-matrix multiplications,

where the vector is of size 1 × m(ND + L2
max + Lmax + 1).

We are particularly interested in the long-run behavior of the

switch but the mean field model is time-dependent and gives

no additional information about the steady-state behavior, if it

exists. We have numerically observed that when the conversion

ratio is large enough to prevent losses caused by the lack of

available converters, the state of the system seems to converge

to a unique steady state. When the conversion ratio is not

enough to avoid packet losses the system shows a stationary
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Figure 2. Time-dependent behavior of a switch with N = 3, ρ = 0.8,
D = 10, geometric IATs and packet size equal to 10

periodic behavior. The length of the period was observed to

be the greatest common divisor of the possible packet sizes.

Even though we do not provide a formal proof of this fact, the

results presented in the next section, as well as many others

not included here, support this observation [17].

IV. RESULTS

In this section we first concentrate in the long-run behavior

of the model, showing the periodic and non-periodic cases.

Next, we compare the results of the mean field model with

estimates from the simulation of a switch with a finite number

of wavelengths. Finally, we analyze the effect of various pa-

rameters on the switch performance. In Figure 2 we illustrate

the time-dependent behavior of the mean field model using the

fraction of converters with horizon equal to 5.The selection

of this value is arbitrary as all the other entries in the state

vector behave in a similar manner. To fix the arrival rate λ we

use the load ρ = λL̄, where L̄ is the expected value of the

packet size. In this scenario the switch has N = 3 FDLs per

output port, the load ρ is 0.8, the granularity is D = 10, the

burst length equals 10, the inter-arrival times (IATs) follow a

geometric distribution (meaning B0 = 1 − 0.8/10 = 0.92
and B10 = 0.8/10 = 0.08), the policy is minG and the

conversion ratio is between 0.1 and 0.3. As can be seen, when

the conversion ratio is equal to 0.1 the state of the converters

is highly variable and after a short warm-up period it adopts a

periodic behavior. When the conversion ratio rises to 0.2 the

warm-up period becomes longer and the state of the converters

is clearly less variable, but the period is exactly the same and

equal to the packet size, in this case 10 slots. Finally, if the

conversion ratio is equal to 0.3 no losses are caused by lack of

converters. In this case the warm-up period is even longer but

the system reaches a unique steady state. A similar behavior

has been observed in all the experiments performed (including

the simulations), with a periodic steady state and period equal

to the greatest common divisor of the possible packet sizes.

This periodic behavior arises when the conversion ratio is

not enough to prevent packet losses. This is an important

observation as it indicates that an underdimensioned number

of WCs leads to a periodic system behavior. If there are plenty
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Figure 3. Mean field model vs. simulation for a switch with N = 5, ρ = 0.8,
σ = 10, packet size equal to 10 and geometric IATs

of converters to translate any extra-packet, the system seems to

converge to a unique steady state, as in Figure 2 for σ = 0.3.

A relevant issue for the mean field model is how it approx-

imates the behavior of a finite system. Here we compare the

results of the mean field model with results from simulation

of a switch with 100, 200 and 500 wavelengths. The estimates

from simulations have confidence intervals with half width less

than 1% of the mean, obtained with the batch-means method.

Figure 3 shows how the performance of the finite system tends

to that of the mean field model, getting closer as the number

of wavelengths increases. In this scenario, as in many others,

the convergence for the minG policy, shown in Figure 3(b),

is smoother than for the minH policy, shown in Figure 3(a).

This is useful since the minG policy tends to use the buffer

capacity in a more efficient manner as shown further on.

We now compare the spill, conversion and loss probabilities

for both allocation policies. In Figure 4 these three quantities

are shown for a switch with N =3 FDLs, granularity D = 10,

load equal to 0.8, geometric arrivals and packet size with

equally probable values 8 and 12. For both policies the

conversion probability increases linearly with the number of

converters up to a point from which it no longer increases. Dur-

ing the interval where this probability increases the converters

are the bottleneck of the system, and therefore they are busy all

the time. When the switch has enough converters to translate

any extra-packet, the switch no longer experiences losses due



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Conversion Ratio σ = C/W

P
ro

b
a
b
ili

ty

Spill Prob minH
Conv Prob minH
Loss Prob minH
Spill Prob minGap
Conv Prob minGap
Loss Prob minGap

Figure 4. Comparison of policies for a switch with N = 3, ρ = 0.8,
D = 10, geometric arrivals and packet size equal to {8, 12}

to the lack of converters. Notice, we can even determine the σ
value where the loss rate becomes zero by running the mean

field model once with σ = 1 and noting the percentage of busy

converters, solving the dimensioning problem of WCs in a

single run. The minG policy requires a smaller conversion ratio

to reach the point where spill and conversion probabilities are

the same than the minH policy. Furthermore, from this point

on the spill probability under minH is larger than under minG,

confirning the well-known result that minH is less efficient

in managing the buffering resources (FDLs). An observation

that can be made from Figure 4, also found in many other

experiments, is the existence of jumps in the spill and loss

probabilities as a function of the conversion ratio, for the minH

policy. These jumps are closely related to the discrete nature

of the FDLs and the way the minH policy reallocates the extra-

packets. As this policy selects the wavelengths with minimum

horizon, the reallocated packets go first to the wavelengths

with horizon 0 and, if the number of converted packets is

larger than the number of wavelengths with horizon 0, the

packets are sent to the wavelengths with horizon equal to 1.

However, this allocation creates large gaps (of size D − 1)

in the wavelengths that receive the converted packets. This

implies that the gap size distribution is affected in a bad

manner, reducing the capacity of the wavelengths and causing

the spill probability to increase. Hence, the jump in the spill

probability, and therefore in the loss probability, is caused by

an increase in the conversion ratio that makes the system able

to convert more packets than the wavelengths with horizon

equal to 0 are able to admit. This jump can be seen in Figure

4 when σ goes from 0.12 to 0.13. The other jumps occur

similarly when the conversion ratio goes from a value in which

the reallocated packets can be handled by the wavelengths

with horizon less than or equal to iD to a value in which they

cannot, for 1 ≤ i ≤ N . Notice that the number of jumps is at

most equal to N but might be less than this value.

Many other results can be obtained from the mean field

model, as shown in [17]. Of particular interest to dimension

the switch is the combined effect of the number of FDLs and

the conversion ratio on the loss probability. We have found that

the conversion ratio where the loss rate drops to zero σ∗ may

decrease when the number of FDLs increases. Furthermore,

if σ is such that the switch has losses due to the lack of

converters, then using one or two FDLs might reduce the

losses substantially. However, adding an extra FDL can also

have no effect at all, even if the switch causes losses. The

actual effect of an additional FDL strongly depends on the

load. With the mean field model we are able to find N − 1
thresholds for the load value such that above threshold i having

more than N−i FDLs has no effect on σ∗, for 1 ≤ i ≤ N−1.
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