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ABSTRACT
In this paper we propose a novel MATLAB tool, called
Q-MAM, to compute queue length, waiting time and so-
journ time distributions of various discrete and continuous
time queuing systems with an underlying structured Markov
chain/process. The underlying paradigms include M/G/1-
and GI/M/1-type, quasi-birth-death and non-skip-free Mar-
kov chains (implemented by the SMCSolver tool), as well as
Markov processes with a matrix exponential distribution.
We consider various single server queueing systems with
phase-type, matrix exponential, Markovian, rational and
semi-Markovian arrival and service processes; queues with
multiple customer types, where the service depends on the
customer type and where consecutive customer types may
be correlated; and queues with multiple servers for which
the typical dimensionality problem can be avoided. Apart
from implementing various classical and more advanced so-
lution techniques, the tool also extends and improves some
of the existing solution techniques in a number of cases.

1. INTRODUCTION
Over the last three decades, broad classes of frequently en-

countered queueing models have been analyzed by matrix-
analytic methods [7, 24, 26, 27]. The embedded Markov
chains and processes include quasi-birth-and-death (QBD),
M/G/1- and GI/M/1-type and non-skip-free (NSF) Markov
chains, as well as Markov processes with a matrix exponen-
tial distribution [28]. Matrix-analytic models include no-
tions such as the Markovian, rational and semi-Markovian
arrival process (MAP, RAP and SM), as well as the phase-
type (PH) and matrix exponential (ME) distribution (both
in discrete and continuous time). Considerable efforts have
been put into the development of efficient and numerically
stable methods for their analysis [7].

More recently, the SMCSolver tool [8, 9] implementing
various state-of-the-art solution techniques (e.g., cyclic re-
duction, invariant subspace approach, the shift technique,
Ramaswami reduction, etc.) for such Markov chains, was
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introduced. Also, both Fortran and MATLAB implemen-
tations are available online. In this paper, we propose a
novel MATLAB tool, called Q-MAM, that builds on the
SMCSolver tool to compute queue length, waiting time and
sojourn time distributions of various classical and more ad-
vanced queueing systems both in discrete and continuous
time. For instance, we consider various single server queue-
ing systems with PH, ME, MAP, RAP and SM arrival and
service processes. We analyze queues with multiple cus-
tomer types, where the service depends on the customer
type and where consecutive customer types may be corre-
lated, meaning the arrival and service processes are PH[K],
MMAP[K] or SM[K]. We further support queues with multi-
ple servers for which the typical dimensionality problem can
be avoided.

We also like to stress that apart from a few well known so-
lution techniques (e.g., the queue length of a MAP/MAP/1
queue), this tool mostly implements various advanced and
often lesser known techniques (e.g., Markov processes with
a matrix exponential distribution). A lot of attention was
also paid to optimizing the code in order to limit the com-
putational resources when computing the performance mea-
sures. For instance, for the PH/PH/1 queue, we relied on
the QBD introduced in [23] as its block size is only the sum
of the number of phases of both distributions, as opposed to
the product when utilizing the standard QBD. Furthermore,
in a number of cases the functions also generalize some of
the existing results in the literature and/or propose novel,
more efficient numerical solution techniques (this is mostly
the case whenever we encounter Sylvester matrix equations).

The paper is structured as follows. We start by giving a
brief overview of the underlying structured Markov chains
and processes involved. Afterward, we discuss the most sig-
nificant issues of the building blocks of the queueing systems
under consideration. In Section 4 we indicate how to use the
MATLAB tool, while Section 5 lists some of the queues im-
plemented by the Q-MAM tool and discusses some of the
main issues of their implementation. This list is not exhaus-
tive and a complete online listing will be maintained when
the tool is made available online.

2. MATRIX-ANALYTIC METHODS
OVERVIEW

When solving queues using matrix-analytic methods, one
usually constructs a discrete or continuous time Markov
chain/process having a highly structured transition or rate
matrix, respectively. The queues implemented by our tool
make use of the five (well-known) paradigms introduced be-



low. For the first four, we limit ourselves to discussing the
discrete time Markov chains only, their continuous time vari-
ants have a similar form. Furthermore, each of these con-
tinuous time Markov chains can be reduced easily to their
discrete time counterparts via a uniformization argument.
For more detailed information about these MCs we refer to
[7, 14, 24, 26, 27, 28].

2.1 QBD Markov chains
QBD Markov chains are characterized by a transition ma-

trix P of the form

P =



B0 A1 0
B−1 A0 A1

A−1 A0 A1

A−1 A0

. . .

0
. . .

. . .

 ,

where A−1, A0, A1 ∈ Rb×b and B0, B−1 ∈ Rb×b, are nonneg-
ative matrices such that A−1 +A0 +A1, B−1 +A0 +A1 and
B0+A1 are stochastic. We will refer to b as the block size and
to the set of states {ib+1, . . . , (i+1)b} as level i of the QBD,
for i ≥ 0, e.g., the matrix Ax holds the transition probabil-
ities from level i to i + x for i > 1 and x = −1, 0, 1. The
memory and time complexity to obtain the stationary vector
of a QBD is O(b2) and O(b3) (per iteration), respectively.
Any of the quadratically converging algorithms (like Log-
arithmic Reduction (LR), Cyclic Reduction (CR), Newton
Iteration (NI), Invariant Subspace (IS)) typically requires
less than 15 iterations. Moreover, the Schur decomposition
variant of the IS algorithm only requires one iteration1 (but
is in general not faster than the other variants).

The form of the transitions toward and from level 0 may
be relaxed, for instance, allowing a different number of states
for level 0. This is convenient as level 0 often corresponds
to an empty queue where there is no need to keep track of
the progress of the service process.

2.2 M/G/1-type Markov chains
M/G/1-type Markov chains are defined by a transition

matrix P of the form

P =



B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1

. . .

A−1 A0

. . .

0
. . .

. . .


,

where Ai, for i ≥ −1, and Bi, for i ≥ 0, are nonnegative ma-
trices in Rb×b such that

∑+∞
i=−1 Ai,

∑+∞
i=0 Bi, are stochastic.

The class of M/G/1-type Markov chains is clearly a general-
ization of the QBD paradigm. As with the QBDs, Ax holds
the transition probabilities from level i to i + x for i ≥ 1,
but with x ≥ −1.

2.3 GI/M/1-type Markov chains
GI/M/1-type Markov chains are characterized by a tran-

1However, the Schur decomposition is itself computed with
a number of iterations of the QR algorithm.

sition matrix P of the form

P =



B0 A1 0
B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0

. . .
...

...
. . .

. . .
. . .

 ,

where A−i, i ≥ −1, and B−i, i ≥ 0 are nonnegative matrices
in Rb×b such that

∑n−1
i=−1 A−i + B−n is stochastic for all

n ≥ 0. The class of GI/M/1-type Markov chains is also a
generalization of the QBD paradigm. As with the QBDs,
Ax holds the transition probabilities from level i to i + x
for i ≥ 0, but with −i + 1 ≤ x ≤ 1. In the computation of
the steady state probability vector of this type of MCs the
matrix R plays a central role. This matrix is the minimal
nonnegative solution to the non-linear matrix equation

R =
∑

i≥−1

Ri+1A−i.

2.4 The case of Non-skip-free processes
Markov chains which are non-skip-free to lower levels are

defined by the generalized block upper Hessenberg matrix

P =



B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

...
...

...
...

. . .

B−N+1 A−N+2 A−N+3 A−N+4

. . .

A−N A−N+1 A−N+2 A−N+3

. . .

A−N A−N+1 A−N+2

. . .

A−N A−N+1

. . .

A−N

. . .

0
. . .



. (1)

for b × b blocks Ai, i ≥ −N and Bi, i ≥ −N + 1, where
N ≥ 1 is an integer. Markov chains which are non-skip-
free to upper levels can be similarly defined in terms of a
generalized block lower Hessenberg matrix. Even though
the matrix P can be reblocked into blocks Bi, i ≥ 0 and Ai,
i ≥ −1 of size bN as

P =



B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1

. . .

A−1 A0

. . .

. . .
. . .


. (2)

and solved like a standard M/G/1-type Markov chain, more
efficient solutions that exploit the internal structure of these
blocks have been developed. Markov chains of this type
typically surface when bulk services are involved.

2.5 Markov processes with a
matrix-exponential distribution

The class of bivariate Markov processes {(Xt, Nt)|t ≥ 0}
with a matrix-exponential distribution are defined as follows:



• The stochastic process {Xt|t ≥ 0} is skip-free to the
right and takes values in [0,∞). It increases at a linear
rate of 1, provided there are no downward transitions.

• Nt takes a finite number of values {1, . . . , b}.

• If (Xt, Nt) = (x, i), it can change its state to some-
where between (x− u, j) and (x− u + du, j) at a rate
of dAij(u), where 0 ≤ u < x and 1 ≤ i, j ≤ b.

• If (Xt, Nt) = (x, i), it can change its state to (0, j) at
a rate of Bij(x), where 0 < x and 1 ≤ i, j ≤ b.

• The matrices A(x) =
∫ x

0
dA(u) and B(x) satisfy the

equation
∑b

j=1(Aij(x) + Bij(x)) = −di, where −di is
the rate at which the next state change can take place
from (x, i). Notice, this implies that the probability
that Xt takes a downward jump of u from x is inde-
pendent of the level x, given that a downward jump
has taken place.

Under the suitable stability conditions, there exists a b × b
matrix T such that

π(x) = π(0) exp(Tx),

where π(x) is a 1×b vector holding the steady state densities
of being at level x. This type of Markov process may be
regarded as a GI/M/1-type MC with a continuous level. As
opposed to R, the matrix T is, in general, a solution to a
non-linear integral equation

T = D +

∫ ∞

0

exp(Tu)dA(u), (3)

where D is a diagonal matrix holding the negative scalars
di. An iterative algorithm to compute T is presented in [28]
by repeatedly evaluating the right hand side of (3) starting
with T = D (the implementation of which is not included
in the SMCSolver tool).

3. THE BUILDING BLOCKS:
ARRIVAL AND SERVICE PROCESSES

3.1 Renewal processes
In this section we discuss three classes of distributions:

Phase-Type (PH), Matrix Exponential (ME) and General
distributions. These can be used to model the service pro-
cess by assuming that the service times of consecutive cus-
tomers are independent and identically distributed. They
can also be used to characterize an arrival process by con-
sidering their corresponding renewal process.

3.1.1 The Phase-Type distribution and renewal pro-
cess

A Phase-Type (PH) distribution is characterized by its
matrix representation (α,S), where α is a (sub)stochastic
1×m vector and S is an m×m matrix. In the discrete time
case, S is a nonnegative substochastic matrix and the PH
cumulative distribution is given by F (n) = 1−αSne, where
e is a column vector with all its entries equal to one. For
the continuous time setting, the entries of S are such that
−Sj,j ≥

∑
j′ 6=j Sj,j′ , with all the entries of S nonnegative,

except for its diagonal entries. The density function of the
continuous PH distribution is given by α exp(Sx)s, with s =
−Se. In other words, a PH distribution may be regarded as

the time until absorption in a discrete/continuous time MC
characterized by S where the initial phase is determined by
α. Phase-Type distributions are well suited for representing
most of the types of services encountered in communication
systems [20, 21]. There is also an active search for accurate
matching algorithms to fit data to a PH distribution [4, 11,
29].

3.1.2 The Matrix Exponential distribution
and renewal process

The class of Matrix Exponential (ME) distributions can
be seen as a generalization of the continuous PH class. The
representation of an ME distribution is also given by the
tuple (α, S), where α is a 1×m vector, S is an m×m ma-
trix and m is a positive integer referred to as the order of
the representation [10]. In this case, however, the entries
of (α, S) can be complex numbers without any restriction
on their sign. It is actually possible to restrict these entries
to be real numbers since this does not limit the ME class
[5]. Additionally, the vector α can always be chosen such
that αe = 1 [6]. Defining s = −Se, the ME density func-
tion is given by f(x) = α exp(Sx)s, for x > 0, and with a
point mass α0 at 0 (here we assume that α0 = 0). For the
tuple (α, S) to be a representation of an ME distribution,
the matrix S must be invertible, and the density must be
positive and integrate to one [5]. Given this conditions it
is in general not easy to determine whether a given vector
and matrix represent an ME distribution or not [1, 13]. For
the functions involving ME distributions as input, we check
the validity of the representation by evaluating the density
function at several points along the x axis. These points
are chosen from a range that comprises a total probability
close to one. Naturally, we verify that the matrix S is non-
singular and that αe = 1. This condition is particularly
relevant for the solution of the QBD with RAP components
as the one that arises when analyzing the ME/ME/1 queue
[6].

From the definition above, it is clear that any PH distri-
bution is an ME distribution but the PH class imposes some
additional restrictions, as explained in the previous section.
In particular, the PH and ME classes are equivalent when
their order is two. This means that the ME class is broader
than the PH class only for order greater than or equal to
three. A specific feature of an ME density is that it can be
zero for some x > 0, while a PH density can not show this
behavior. The use of ME distributions in queuing theory
arises from the possibility of extending many of the results
for PH distributions to this broader class. Even though this
has not been completely accomplished, several results have
been obtained in that direction [6, 10, 25]. Additionally, the
fact that the set of ME distributions imposes less restrictions
than the PH class makes it attractive to fit data to this type
of distribution. Some results about the characterization and
fitting of ME distributions can be found in [12, 13, 19, 29,
30].

In the same way as for PH distributions, it is possible
to define a discrete counterpart for ME distributions. These
distributions are called matrix-geometric (MG) and are char-
acterized by a row vector α, a square matrix P and a col-
umn vector s. The probability mass function is given by
pn = αP ns, for n ∈ {0, 1, 2, . . . } and s = e− Pe [5].



3.1.3 GI - the General distribution and renewal pro-
cess (with marked arrivals (GI[K]))

A GI renewal process is fully characterized by any cumula-
tive distribution function F (t), where F (t) denotes the prob-
ability that the interarrival time is smaller than or equal to
t. F (t) can have a discrete, continuous or mixed nature. The
GI[K] renewal process generates arrivals of K different types
and is characterized by a set of K cumulative distribution
functions Fk(t) and probabilities pk, for k = 1, . . . , K, such

that
∑K

k=1 pk = 1. The probability pk gives the probability
that the next customer is of type k, while Fk(t) represents
the interarrival time, given that a type k arrival occurs.

3.2 Non-renewal processes
Even though some of the processes discussed below are

called arrival processes, they can be used just as easily to
model the service process of a queueing system, e.g., as in
the MAP/MAP/1 queue.

3.2.1 MAP-the Markovian Arrival Process (with
batches (BMAP) or markings (MMAP[K]))

In discrete time, the BMAP (or MMAP[K]) is character-
ized by a set of K + 1 nonnegative substochastic m × m
matrices {Dk|k = 0, . . . , K}, with

∑K
k=0 Dk stochastic (and

irreducible). The (j, j′)-th entry (Dk)j,j′ of Dk holds the
probability

(Dk)j,j′ = P [Nt+1 = k, Jt+1 = j′|Jt = j],

where Jt is the phase of the underlying MC, characterized
by

∑K
k=0 Dk, at time t and Nt denotes the number of arrivals

(for the BMAP) or the type of the arriving customer (for the
MMAP[K]) occurring at time t (where type 0 corresponds to
no arrival). MAPs are BMAPs (or MMAP[K]s) with K = 1.

In continuous time, the set of m × m matrices {Dk|k =
0, . . . , K} characterizing the BMAP (or MMAP[K]), are such

that −(D0)j,j =
∑

j′ 6=j(D0)j,j′ +
∑K

k=1

∑m
j′=1(Dk)j,j′ , with

all the entries of Dk, for k = 0, . . . , K, nonnegative, except
for the diagonal entries of D0. The (j, j′)-th entry (Dk)j,j′ of
Dk holds the rate at which the underlying continuous time
MC, characterized by

∑K
k=0 Dk, changes its phase from j to

j′, while generating k arrivals for the BMAP or a type k
arrival for the MMAP[K] (for k 6= 0 or j 6= j′).

Notice, whenever the MAP process is used to model the
service process, its phase gets frozen during the time inter-
vals where the server becomes idle.

3.2.2 RAP - the Rational Arrival Process
The RAP is a generalization of the continuous-time MAP

in the same way as ME distributions generalize continuous-
time PH distributions [2]. The RAP is characterized by two
m×m matrices D0 and D1. For these matrices to represent
a RAP the dominant eigenvalue of D0 must have negative
real part, the dominant eigenvalue of D0 + D1 must be zero
and the row sum of D0 + D1 must also be zero. Addi-
tionally, the joint density function of the inter-event times
must be non-negative; it is given by f(x1, x2, . . . , xn) =
α exp(D0x1)D1 exp(D0x2)D1 . . . exp(D0xn)D1e, where α is
a row vector specifying the initial conditions of the pro-
cess. To verify if a tuple (D0, D1) is a representation of
a RAP we first consider the direct conditions on the ma-
trices. If the matrices comply with these conditions, we
consider the event-stationary version of the RAP to test
the non-negativity of the inter-arrival density function. In

the event-stationary case, the vector α is chosen such that
α(−D−1

0 D1) = α, i.e., α is a stationary vector of the ma-
trix −D−1

0 D1. In the MAP case, the entries of this matrix
are the phase transition probabilities at event epochs. Using
this vector we evaluate the density f(x1) and the joint den-
sity f(x1, x2) at several points such that the covered range
accounts for a probability close to 1. As with ME distribu-
tions, some fitting methods have been developed to capture
the moments of the inter-event distribution and the joint
moments of successive events with RAPs [12, 29]. Addi-
tionally, some methods have been developed to find a MAP
representation from a RAP in case it exists [29]. With this
result it is possible to analyze a queue using the simpler
MAP process rather than the RAP. Nevertheless, these pro-
cedures may require a considerable amount of time and in
some cases a MAP representation may be impossible to get
since this class is a proper subset of the RAP class. Using
the implemented methods to solve the RAP/RAP/1 queue
directly is useful to avoid the MAP translation and to ana-
lyze a broader set of queues.

3.2.3 SM - the semi-Markovian process (with marked
arrivals (SM[K])

In discrete time the SM[K] arrival process is characterized
by a set of nonnegative m×m matrices Di

k, for k = 1, . . . , K
and i ≥ 1, such that

∑
i,k Di

k is stochastic. The (j, j′)-th

entry (Di
k)j,j′ of Di

k holds the probability

(Di
k)j,j′ = P [In = i, τn = k, Jn = j′|Jn−1 = j],

where Jn is the phase of the underlying MC, characterized
by

∑
i,k Di

k, after the n-th arrival, τn is the type of the
n-th arrival and In denotes the interarrival time between
customer n− 1 and n. The SM processes correspond to the
subclass of the SM[K] processes with K = 1.

When the discrete time SM[K] process is used to model
the service times, these matrices have a slightly different
meaning:

(Di
k)j,j′ = P [Sn = i, Jn+1 = j′|τn = k, Jn = j],

where Sn is the service time of the n-th customer. Here, the
Di

k matrices have the requirement that D =
∑

i Di
k has to

be identical and stochastic for every k = 1, . . . , K. Thus, the
type k of the customer does not influence the phase of the
underlying process (but only influences the service time).
Notice, for K = 1, there is no difference between the SM
arrival or service process.

4. BASIC OPERATION OF THE MATLAB
TOOL

The MATLAB implementation of the tool consists of a
collection of MATLAB functions which can be executed from
the command line (or called from within other functions or
scripts). Each function takes at least one required parameter
as input and may support several optional parameters. A
call to a function, called fname, uses the following syntax:

output para = fname(required para,optional para)

If the function produces a single output parameter O1, one
simply replaces output para by O1. In case of multiple out-
put parameters, O1, O2, . . . , Ok, one sets output para equal
to [O1,O2,. . . ,Ok]. If the user is only interested in the first



l < k output variables, it suffices to shorten the list to Ol.
This may potentially shorten the computation time as the
values of the remaining k − l output variables are typically
computed last. As with any other MATLAB function, the
required para field holds the list of required parameters sep-
arated by commas: R1,R2,. . . ,Rr.

The optional para field contains the list of optional pa-
rameters. When a function call uses no options, one simply
passes the required para field to the function. Otherwise,
a pair of inputs must be given for each optional parameter
used: the parameter name (pname) and the parameter value
(pvalue). The name is always placed between single quotes,
the value is placed between quotes if it holds a string (and
not a numeric value or cell object). The parameter name
has to be followed by its value, the order of the optional
parameters on the other hand is arbitrary. Hence, in case of
t optional parameters we have

optional para = 'pname1',pvalue1,. . .,'pnamet',pvaluet

The tool parses all optional parameters using the support
function Q ParseOptPara.m. As with any inbuilt MATLAB
function, help can be requested for a function part of this
tool by typing ‘help fname’ on the command line. The names
of the functions start with the prefix Q DT (resp. Q CT) if
the queueing system under analysis works in discrete (resp.
continuous) time. The rest of the name includes the ar-
rival process, the service process and the number of servers,
separated by underscores. Some of these functions are in-
cluded in Figure 1 as rectangular boxes. This figure shows
the default dependency of the main Q-MAM functions on
the SMCSolver routines. It also shows that when the under-
lying Markov process has a matrix exponential distribution,
the Q Sylvest function is the default option to solve Equa-
tion (3). The functions of the SMCSolver marked with an
asterisk were modified to support the continuous-time ver-
sion of the implemented algorithms. Additional dependency
relations not shown in this figure are related to the valid-
ity check of the input arguments. Depending on its input
parameters, each function calls different subroutines to ana-
lyze the validity of the parameters of the arrival and service
processes. From Figure 1 it is clear that in most cases the
underlying MC is solved using the CR algorithm as a de-
fault choice. We now show how this option can be modified
and introduce other optional parameters supported by the
Q-MAM functions.

4.1 General Optional Parameters
In this subsection we discuss three optional parameters

that are shared by many of the supported functions.

4.1.1 Mode
Many functions compute the queue length, waiting and so-

journ time distribution of queueing systems with an under-
lying QBD, M/G/1- or GI/M/1-type Markov chain. To ob-
tain the steady state of these underlying Markov chains, one
first needs to compute either the well-known R or G matrix.
The SMCSolver tool supports various functions for doing so,
e.g., for M/G/1-type MCs one can use functional iterations
(FI), cyclic reduction (CR), the invariant subspace (IS) ap-
proach or the Ramaswami reduction (RR). By default, R or
G are always computed using the CR algorithm. However,
a different underlying algorithm can be selected using the
optional parameter with pname='Mode'. For instance, to

Q_DT_MAP_MAP_1

Q_RAP_RAP_1

Q_CT_PH_PH_1 Q_DT_PH_PH_1

Q_CT_MAP_MAP_1
Q_DT_MMAPK_PHK_1

Q_CT_MMAPK_PHK_1 Q_DT_MMAPK_SMK_1

Q_DT_SMK_PHK_1

Q_CT_MAP_M_C

Q_CT_MAP_D_C

Q_Sylvest

QBD_CR

QBD_pi*

QBD_LR*

MG1_CR MG1_pi

GIM1_R

NSF_GHT NSF_pi

Q-MAM SMCSolver

Figure 1: Dependency Graph of the Q-MAM Tool

select the invariant subspace approach one sets pvalue='IS'.
Whenever the underlying structured Markov process has
a matrix exponential distribution, two modes of operation
are supported: pvalue='Direct' and pvalue='Sylves'. Com-
ments on the distinction between these two modes of op-
eration are given in the discussion on the continuous time
MMAP[K]/PH[K]/1 queue.

4.1.2 Optfname
Our tool also offers the possibility to pass optional pa-

rameters to any of the underlying SMCSolver tool functions
when called by a Q-MAM function. This is realized through
the option 'Optfname', where fname is the name of the un-
derlying function, e.g., fname=QBD CR. The pvalue of this
option is a cell object holding the option name and value
for each of the underlying options. For instance, to activate
the 'Verbose' option and set the 'Mode' equal to 'Basic',
for the underlying function QBD CR, one sets pname equal
to 'OptQBD CR' and pvalue equal to varname, where var-
name is a MATLAB cell object with varname{1}='Verbose',
varname{2}=1, varname{3}='Mode', varname{4}='Basic'.
A single call may contain multiple Optfname options and
their order with respect to the other optional parameters is
irrelevant.

4.1.3 Verbose
Similar to the SMCSolver tool, the 'Verbose' option will

inform the user about the progress of the computation when
set to 1. By default, its option value equals 0, indicating
that no feedback is provided. Notice, activating the 'Ver-
bose' option of a Q-MAM function does not automatically
activate the 'Verbose' options of the underlying SMCSolver
functions, if needed, this must be done via the Optfname
option.

5. DESCRIPTION OF IMPLEMENTED
QUEUEING SYSTEMS

In this section we present a listing of the various queueing
systems that can be solved with our tool. We like to em-
phasize that this overview presents only a limited selection
of the functionality offered by the tool. A complete listing
with details for all the functions available will be maintained
(and updated) online. Some of these functions also imple-
ment additional performance measures or variants of queues



discussed in the existing literature. Each of these functions
checks the validity of the input parameters and generates an
error if the load of the queue exceeds one.

5.1 Single-type queueing systems

5.1.1 The MAP/MAP/1 queue
The queue length, waiting time and sojourn time distri-

butions of a single server queue where both the arrival pro-
cess and the service process are described by a continuous
and discrete time MAP can be obtained using the functions
Q CT MAP MAP 1 and Q DT MAP MAP 1, respectively.
For such queues, consecutive interarrival times as well as
consecutive service times can be correlated. Assume the
MAP arrival process is characterized by the ma×ma matri-
ces C0 and C1, whereas the MAP characterizing the service
process is given by the matrices D0 and D1 of dimension
ms.

To retrieve the queue length distribution of the continuous
time MAP/MAP/1 queue, we use the standard QBD MC
with A−1 = I⊗D1, A0 = C0⊕D0, A1 = C1⊗I, B−1 = A−1

and B0 = C0 ⊗ I. The Q CT MAP MAP 1 function relies
on the QBD CR and QBD pi functions with a block size
b = mams to solve this QBD. In an analogue manner, the
Q DT MAP MAP 1 function computes the queue length of
the corresponding discrete time queue.

The waiting and sojourn time distributions of a continu-
ous time MAP/MAP/1 queue are Phase-Type with b phases
and their PH representations are obtained by constructing a
Markov process {(Xt, Jt)|t ≥ 0} with a matrix exponential
distribution. Xt represents the age of the customer in ser-
vice at time t, while Jt stores the current phase of the service
process and the phase of the arrival process at time t−Xt.
This Markov process is found as a simple generalization of
the technique presented in [16], for the special case of the
continuous time MAP/PH/1 queue. For a brief discussion
on the two modes of operations for solving (3), we refer to
the continuous time MMAP[K]/PH[K]/1 queue.

The waiting and sojourn time distributions in the discrete
time case are computed using the invariant vector of the
standard QBD for the queue length, by first determining the
probability that the system holds i customers immediately
after an arrival, while the phase of the service process is
j, which we denote as the j-th entry of the row vector πa

i .
Subsequently, the probability that the sojourn time equals
n is given by

∑n
i=1 πa

i µn
i (an analogue formula can be given

for the waiting time), where the j-th entry of the column
vector µn

i holds the probability that the i-th arrival of a
MAP characterized by (D0, D1) arrives at time n given that
the phase equals j at time 0. The vectors µn

i are easily
obtained in a recursive manner, starting with µ1

1 = D1e.

5.1.2 The PH/PH/1 queue
In this queueing system the respective representation for

the inter-arrival and the service distributions are (α, T ) of
order ma and (β, S) of order ms. To obtain the queue length
distribution, one could use an approach similar to the one
discussed in the previous section by constructing a QBD
MC with a generator matrix in which the block size equals
mams.

However, in [23] it was shown that by considering the pro-
cess at epochs of queue size change only, one obtains a QBD
MC where the size of the blocks in the generator matrix

equals ma + ms. That is, if the most recent event was an
arrival, one has to keep track of the phase of the service
process only, while after a service completion it is sufficient
to remember the phase of the arrival process. The com-
putation of the order ms PH distribution (wt α, wt T ) of
the waiting time distribution from this smaller QBD MC, is
also discussed in this paper and implemented by the function
Q CT PH PH 1.

The function Q DT PH PH 1 is also available and can be
used to solve the discrete-time variant of this queue using a
QBD with block size b = ma + ms (note, [23] was limited
to the continuous time case only), where the waiting time
distribution is obtained via a series of convolutions after
having found the queue length distribution and service phase
at arrival time.

5.1.3 Combinations of MAP and PH
Our tool also includes functions for the MAP/PH/1 and

the PH/MAP/1 queue. As these are special cases of the
MAP/MAP/1 queue, analogue QBD MCs and Markov pro-
cesses are used to solve them. These queues are also consid-
ered in both continuous and discrete time.

5.1.4 The RAP/RAP/1 queue
The function Q RAP RAP 1 computes the queue length

distribution in a single server queue where the arrivals are
described by a size ma RAP(C0,C1) and the services by a
size ms RAP(D0,D1). First, the arrival and service pro-
cesses are tested to assure that the matrices comply with
the necessary conditions and the non-negativity of the den-
sity functions is tested for several points, as described in
Section 3. The analysis is then carried out by specifying a
Markov process X(t) on the state space N0 ×A, where the
first component of X(t) is the queue length and the second
is the phase vector. A is the set made by the product of the
compact convex sets on which the arrival and service RAPs
are defined [6]. In a similar way as for the MAP/MAP/1
queue, the matrices A1 = C1⊕I and A−1 = I⊕D1 describe
the upward and downward jumps, respectively, when the
level is greater than or equal to one. Additionally, the evo-
lution of the phase vector between jumps is determined by
a differential equation expressed in terms of A1 = C0 ⊕D0.
The downward jumps from level one to level zero are also
ruled by the matrix A−1, while the behavior of the phase
vector between jumps in level zero depends on the matrix
B0 = C0 ⊗ I.

The well-known matrices G, R and U that arise in the
analysis of traditional QBDs also appear in this more gen-
eral setting. Furthermore, the nonlinear equation A−1 +
A0G + A1G

2 = 0 holds [6, Corollary 6]. Thus, it is pos-
sible to determine the matrix G using algorithms that rely
on this equation, e.g. Functional Iterations or LR. In the
tool, the equation is solved using the LR algorithm with the
function QBD LR of the SMCSolver. This function was ex-
tended with the RAPComp option, which is set to 1 when
calling QBD LR. To compute the stationary queue length
distribution we extended the function QBD pi with a simi-
lar option to determine the expected state of the stationary
phase vector at level zero π0.

5.2 Multitype queueing systems

5.2.1 The discrete-time MMAP[K]/PH[K]/1 queue



This function solves a single server queue with customers
of K different types, the service time of a type k customer
has a size mk PH distribution characterized by (αk, Sk), for
k = 1, . . . , K. The arrival process is a size m MMAP[K],
meaning consecutive interarrival times and customer types
can be correlated. The function Q DT MMAPK PHK 1
computes the overall and per type queue length, waiting
and sojourn time distribution (whereas [31] was limited to
waiting and sojourn times only).

Its implementation relies on [31], where a QBD MC is
derived from a GI/M/1-type MC {(Xn, Jn)|n ≥ 0}, where
Xn represents the age of the customer in service and Jn

stores the type of the customer in service, the current phase
of the service process and the phase of the MMAPK when
the customer in service arrived. The block size b of the
resulting QBD MC is b = m + m

∑
k mk. The function

relies on the QBD CR and QBD pi functions and therefore
requires O(b2) memory and O(b3) time per iteration.

To determine the queue length distribution of the type k
customers, we start by determining the probability that the
age of the customer in service equals i, its type is k, while the
phase of the arrival process is j, which we denote as the j-th
entry of the row vector πk

i . Subsequently, the probability
that the type k queue length equals n, with n > 0, is given

by
∑

i≥n−1 πk
i µi

n−1 +
∑

i≥n(
∑

k′ 6=k πk′
i )µi

n (an analogue for-

mula can be given for the overall queue length), where the
j-th entry of the column vector µi

n holds the probability that
n type k arrivals of the MMAPK arrive in a length i interval
that starts in phase j. The vectors µi

n are easily obtained in
a recursive manner, starting with µ0

0 = e.

5.2.2 The continuous-time MMAP[K]/PH[K]/1
queue

The Q CT MMAPK PHK 1 function computes the over-
all and per type queue length, sojourn and waiting time
distribution for the MMAP[K]/PH[K]/1 queue in continu-
ous time. Its implementation relies on [16], where a Markov
process {(Xt, Jt)|t ≥ 0} is constructed, where Xt represents
the age of the customer in service at time t and Jt stores
the type of the customer in service, the current phase of the
service process and the phase of the MMAP[K] when the
customer in service arrived. The age Xt of a customer is a
continuous variable and the resulting Markov process turns
out to be a Markov process with a matrix exponential dis-
tribution. The block size b of the resulting Markov process
is b = m

∑
k mk.

In general, each iteration of the algorithm used to solve the
non-linear integral matrix equation (3) requires a numerical
integration. However, as demonstrated in [16] for this spe-
cific queueing system, numerical integration can be avoided
by solving a (large) system of b2 linear equations in b2 un-
knowns, at a cost of O(b6) time and O(b4) memory per iter-
ation. By recognizing that this linear system corresponds to
a Sylvester matrix equation of the form TnX +X(D0⊗I) =
−I, we have reduced this cost to O(b3) and O(b2), respec-
tively, using the Q Sylvest function. More specifically, dur-
ing the n-th iteration we need to perform a Hessenberg de-
composition of Tn, taking 14b3/3 time and solve a set of
b Hessenberg systems, each requiring O(b2) time. The re-
quired Schur decomposition of (D0⊗I) is obtained from the
decomposition of D0 and needs to be performed just once.

The Q CT MMAPK PHK 1 function offers two modes of
operation: (i) the Direct mode which solves the (large) linear

system during each iteration and (ii) the Sylves mode which
relies on the Q Sylvest function. The latter of these two
modes of operation is the default mode. The (continuous,
per type and overall) waiting time and sojourn time distri-
bution of such a queueing system is of Phase-Type (with at
most b phases), as such the return values of the function
correspond to their PH-representations.

To retrieve the distribution of the number of type k cus-
tomers present in the queue, we use a modified version of the
formulas presented in [16, Section 5.2] (such that the cus-
tomer in service is also taken into account). The key step
consists in determining a set of b×b matrices Lk(n) for n ≥ 0,
where Lk(0) is a solution of TLk(0)+Lk(0)(D0,k⊗I) = −T
and TLk(n) + Lk(n)(D0,k ⊗ I) = −Lk(n − 1)(Dk ⊗ I), for
n > 0, where D0,k = D0 +

∑
i6=k Di. A direct-sum approach

is proposed in [16] to compute these matrices. However, by
recognizing that Lk(n) is the solution of a Sylvester matrix
equation of the form AX + XB = C, where A and B are
identical for any n, it suffices to perform a single Hessen-
berg decomposition of A = T and a Schur decomposition of
B = (D0,k⊗I), while Lk(n) can be obtained from Lk(n−1)
by solving a set of b Hessenberg linear systems. An ana-
logue approach can be used for the overall queue length by
replacing D0,k by D0 and Dk by

∑K
i=1 Di.

5.2.3 The discrete-time SM[K]/PH[K]/1 queue
This function solves a single server queue with customers

of K different types, the service time of a type k customer has
a size mk PH distribution characterized by (αk, Sk), for k =
1, . . . , K. The arrival process is a size m SM[K], meaning
consecutive interarrival times and customer types can be
correlated. The function Q DT SMK PHK 1 computes the
overall and per type sojourn time distribution and waiting
time distribution. Optionally, one can also request a PH-
representation of these distributions.

Its implementation relies on [18], where a GI/M/1-type
MC {(Xn, Jn)|n ≥ 0} is constructed, with Xn the age of
the customer in service and Jn holds the type of the cus-
tomer in service, the current phase of the service process and
the phase of the SM[K] arrival process when the customer
in service was generated. The block size b of the result-
ing GI/M/1-type MC is b = m

∑
k mk. As opposed to the

MMAP[K]/PH[K]/1 queue, there is no efficient QBD reduc-
tion possible. The function relies on the GIM1 R function
of the SMCSolver.

Notice, queueing systems like the SM/PH/1, GI/PH/1
and GI[K]/PH[K]/1 queue (in discrete time) are special cases
of the SM[K]/PH[K]/1 queue and can therefore be solved us-
ing the Q DT SMK PHK 1 function.

5.2.4 The discrete-time MMAP[K]/SM[K]/1 queue
This function solves a single server queue with customers

of K different types, the service times are determined by a
size ms SM[K] process, thus, consecutive service times can
be correlated and may depend on the customer type. The
arrival process is a size m MMAP[K], meaning consecutive
interarrival times and customer types can be correlated. The
function Q DT MMAPK SMK 1 computes the overall and
per type sojourn time distribution and waiting time distri-
bution.

Its implementation relies on [17], where an M/G/1-type
MC {(Xn, Jn)|n ≥ 0} is constructed, where Xn represents
the workload in the system and Jn stores the current phase



of the service and arrival process. The block size b of the
resulting M/G/1-type MC is b = mms. The function relies
on the MG1 CR and MG1 pi functions of the SMCSolver.

Notice, queueing systems like the MAP/G/1, MAP/SM/1
and MMAP[K]/G[K]/1 queue (in discrete time) are special
cases of the MMAP[K]/SM[K]/1 queue and can therefore be
solved using the Q DT MMAPK SMK 1 function.

5.3 Multiserver queues
Although the solution methods for most of the queueing

systems considered above can be generalized to multiserver
queueing systems, this typically requires the storage of the
(current) phase of all the servers, making the block size
b of the corresponding structured Markov chain impracti-
cal, unless the number of servers is (very) small. As we
aim at developing efficient, state-of-the-art implementations
of queueing systems with an underlying structured Markov
chain, such implementations are not supported by our tool.
The tools does support a number of multiserver queueing
systems where such dimensionality problems can be avoided
in an elegant manner.

5.3.1 The continuous time MAP/D/c queue
The analysis of the queue with c servers, deterministic

service times and MAP arrivals is based on [26]. The queue
is observed every s time units, where s is the length of the
service time. Let Xn be the number of customers in the
system and Jn be the phase of the arrival process. Then the
Markov chain {(Xn, Jn)|n ≥ 0} has a non-skip-free structure
to lower levels. The function Q CT MAP D C uses this
Markov chain to determine the stationary distribution of the
queue length at an arbitrary point in time. The parameters
of the function are the m×m matrices {D0, D1} of the MAP
process, the length s of the service time and the number of
servers c.

The transition matrix of the chain can be expressed in
terms of the m × m matrices P (k, s) = [Pij(k, s)]. The
elements Pij(k, s) are equal to the probability of having k
arrivals in an interval of length s and the phase of the arrival
process at the end of this interval is j, given that it was in
phase i at the beginning of the interval. These matrices are
computed using the uniformization method [24]. The tran-
sition matrix has the structure of matrix P in Equation (1)
with A−c+i = P (i, s), for i ≥ 0. These matrices are used to
compute the matrix G using the function NSF GHT of the
SMCSolver. Furthermore, the first c rows of the transition
matrix are all equal to row c + 1: [A−c A−c+1 A−c+2 . . .].
This structure can be exploited by using the function NSF pi
to compute the joint stationary probability distribution of
the queue length and the phase of the arrival process.

Additionally, the waiting time distribution can be com-
puted for a specific set of points on [0,∞). This set is deter-
mined by the option NumSteps which specifies the number
of equally separated points to evaluate in the range [0, s).
The default number of steps is equal to 1, meaning that the
waiting time distribution is only evaluated at multiples of s.
If this number is set equal to some integer K, it is necessary

to evaluate the matrices P (k, x) for x = { s
K

, 2s
K

, . . . , (K−1)s
K

}
and k ≥ 0.

5.3.2 The MAP/M/c queue
The function Q CT MAP M C computes the queue length

and waiting time distributions of the queue with continuous-
time MAP arrivals and c exponential servers. The MAP
is characterized by the m × m matrices D0 and D1, and
the rate of the exponential service times is µ. To deter-
mine the queue length a level-dependent QBD MC is set
up. Let X(t) be the number of customers in the system
and J(t) be the phase of the arrival process at time t, then
{(X(t), J(t))|t ≥ 0} is MC with a QBD structure. Let the
set of states {(k, j), 0 ≤ j ≤ m} be the level k of the MC,
in which k customers are in the system. From level c on-
wards the transitions are independent of the level with the
QBD matrices given by A−1 = cµI, A0 = D0 − cµI and
A1 = D1. The QBD CR function of the SMCSolver is used
to compute the matrix R of this QBD which allows the de-
termination of the components of the stationary probability
vector for the levels greater than or equal to c. Let the
stationary probability vector π of the MC be partitioned as
π = [π0, π1, . . . ], where the 1 ×m vector πk corresponds to
level k. The QBD structure implies that πc−1+i = πc−1R

i

for i ≥ 1. To determine [π0, π1, . . . , πc−1] we use the al-
gorithm in [15] for finite level-dependent QBDs. The MC
between levels 0 and c− 1 is a level-dependent QBD as the
transitions from level i to level i − 1 are given by the ma-
trix iµI. To analyze the first c levels as a finite QBD we
consider the generator of the process restricted to these lev-
els. This implies that the transient generator at level c − 1
is modified to be D0 − (c − 1)µI + RA0 and the only al-
lowed transitions outside this level are to level c−2 given by
the matrix (c − 1)µI. Once the vector [π0, π1, . . . , πc−1] is
computed it must be rescaled to comply with the condition∑c−2

k=0 πke + πc−1(I − R)−1e = 1. The quantities πke, for
k ≥ 0, give the probability that there are k customer in the
system at an arbitrary point in time.

For the computation of the waiting time distribution we
rely on [3], where it is shown that the waiting time is Phase-
Type with some representation (ρ, S). The matrix S is de-
termined by first computing the T matrix of the Markov
process {(Xt, Nt), t ≥ 0} with a matrix exponential dis-
tribution obtained by observing the queueing system only
when all the servers are busy, where Xt is the age of the
youngest customer being served and Nt denotes the phase
of the arrival process when this youngest customer arrived.
This T matrix is identical to the one of the Markov pro-
cess used to compute the waiting time distribution in a
MAP/M/1 queue with service rate cµ. In [3, Section 6],
the vector ρ and matrix S are computed from T using an-
other vector α. Instead of using relation (7.2) in Section 7
to compute α, it is worth noting that αi equals the prob-
ability that the phase of the arrival process equals i im-
mediately after an arrival who found at least c − 1 busy
servers upon arrival. Hence, we can easily recover α from
the QBD constructed to compute the queue length distri-
bution as α = πc−1(I − R)−1D1/(πc−1(I − R)−1D1e). As
a final step, the vector ρ needs to be normalized correctly
by the probability that a customer has a nonzero waiting
time. This probability is again more easily obtained from
the queue length QBD using πc(I−R)−1D1e/(

∑∞
i=0 πiD1e).

The queue length and waiting time distributions for the
discrete time version of this queue are computed by the func-
tion Q DT MAP Geo C. In this case the services are geo-
metrically distributed with parameter p and service com-
pletions may occur simultaneously. By setting up an MC
similar to the one just described one obtains a GI/M/1-type



structure from level c onward. The process is characterized
by the matrices A−c+j = D0b(c, c − j) + D1b(c, c − j + 1)
for j = 0, . . . , c + 1. The term b(c, j) is the binomial proba-
bility of having j service completions among c busy servers,
i.e., b(c, j) =

(
c
j

)
pj(1− p)c−j for j = 0, . . . , c, and it is equal

to zero for j < 0 or j > c. The R matrix of the process
is computed using the GIM1 R function of the SMCSolver
and it is used to censor the MC between levels 0 and c. This
finite MC has a skip-free-to-the-right structure and there-
fore the algorithm in [22] can be applied to compute the
steady-state probability vector for the first c+1 levels. This
vector is similarly renormalized and the probability vector
for higher levels can be computed from πc and R. The wait-
ing time distribution is then recursively computed from the
queue length distribution at arrival epochs.
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