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ABSTRACT
Phase-Type distributions are a powerful tool in stochastic
modeling of real systems. In this paper, we describe an
object-oriented tool used to represent and manipulate these
distributions as computational objects. It allows the compu-
tation of multiple closure properties that can be used when
modeling large systems with multiple interactions. The tool
also includes procedures for fitting the parameter of a distri-
bution from a data set and capabilities for generating ran-
dom numbers from a specified distribution. This framework
is built in a flexible and expandable way, and, therefore, it
is not limited to the algorithms provided.

1. INTRODUCTION
Phase-Type (PH) distributions are a general class of prob-

ability distributions that generalize the well known expo-
nential distribution through the composition of exponential
phases. They were first introduced by Marcel Neuts [21].

The interest in PH distributions is threefold: they are
dense, they allow to model many systems using Continuous
Time Markov Chain (CTMC), even if the inter-arrival and
processing times are not stochastic, and they have useful
closure properties. We now comment on each of these items.

• First, it can be shown that PH distributions are dense,
in the sense that the distribution of any continuous
(non-negative) random variable can be approximated
by a PH variable to any arbitrary precision (for a proof
see, e.g., [21]). This implies that, for practical pur-
poses, limiting the analysis of a particular system to
PH distributions does not limit the applicability of the
resulting model. However, the number of phases re-
quired could be prohibitively high for practical com-
putations. Also, the aforementioned proof does not
give light as how best to proceed when a PH repre-
sentation is required for a particular data set, or a
given distribution. There are, however, methods to
find an approximating PH, and this problem has been
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the subject of recent research. Some of these methods
are reviewed in Section 5.

• The second reason that interests us is that using PH
variables you can model many systems as a CTMC,
even if the distributions involved are not exponential.
Consider, for example, a single-server queueing sys-
tem with PH service times and Poisson arrivals. If the
state definition keeps track of the current processing
phase, the resulting model is a CTMC. Naturally this
increases the number of states compared to the equiv-
alent model with exponential distributions. Applica-
tions of PH distributions in manufacturing systems are
described in [6] and references therein. They are also
employed to model stochastic lead times in inventory
models [34]. They are used in [27] to model Bucket
Brigades systems.

• Finally, the PH variables have interesting closure prop-
erties under various operations like convolutions and
mixtures.

Common examples of PH are the exponential, the Erlang,
and the hyper-exponential distributions. For a review of
these and other interesting PH properties see Neuts [21] and
Latouche and Ramaswami [17].

In this paper, we present an object-oriented tool (called
jPhase) to model PH distributions in a computational frame-
work, allowing the representation and manipulation of these
distributions as computational objects. This tool is part of
a large project called jMarkov, whose aim is to provide an
object-oriented based framework to facilitate modeling of
large complex stochastic systems [28]. The developed struc-
ture allows a computational representation of PH distrib-
utions, the properties that they should have and functions
to operate on them. For example, it has functions for the
computation of the probability density or mass function, the
cumulative distribution function, and moments, among oth-
ers. It also admits the computation of closure properties,
that can be used to model complex relations in stochastic
stochastic systems. This issue was also included in SMART,
a software package developed by Ciardo and his collabora-
tors [7].

The main contribution of this work is that, using jPhase,
any person with a basic knowledge in object-oriented pro-
gramming can use PH distributions in the analysis of com-
plex real-life systems where processing and inter-arrival times
might not necessarily be exponential, and easily manipulate
the distributions to generate new ones. In order to do that,



it is important to find an easy way to go from data sets to pa-
rameters of PH distributions. One of the packages provided
with the tool (called jPhaseFit) implements algorithms that
fit the parameters of a PH distribution from a data set, and
defines a flexible framework to add other algorithms. This
tool also includes another package called jPhaseGenerator,
which implements the algorithms developed by Neuts and
Pagano [20] for generating discrete and continuous PH ran-
dom variates, and defines the basic structure for any other
that could be added in the future. In Figure 1 we show a
simple example of what can be done with this tool. There
two PH variables are created, the first one represents an ex-
ponential distribution and the other an Erlang distribution.
Then a third one is created by computing the maximum be-
tween the first two variables and its cumulative distribution
function is evaluated at 2.0. With the previous example we
obtain that P (v3 ≤ 2.0) = 0.7988.

ContPhaseVar v1 = DenseContPhaseVar . expo ( 3 ) ;
ContPhaseVar v2 = DenseContPhaseVar . Erlang ( 1 . 5 , 2 ) ;

ContPhaseVar v3 = v1 .max( v2 ) ;

System . out . p r i n t l n ( ”P(v3 <=2.0): ” +v3 . cd f ( 2 . 0 ) ) ;

Figure 1: jPhase: Simple Example

A graphic user interface was also developed in order to
allows the interaction with the tool through the familiar
windows, buttons, and menu bars. This interface allows an
easier interaction with the user, and can be used to make
a relevant analysis of a real system, including data fit, clo-
sure properties computation, and graphical presentation of
the probability density function and cumulative distribution
function.

This document is organized as follows: in Section 2, we de-
scribe PH distributions and some of its relevant properties.
In Sections 3, 4, and 5, we describe the different modules
that compose jPhase: the main, the fitter, and the gener-
ator, respectively. In Section 6, we give some illustrative
usage examples. Finally, we give some some concluding re-
marks in Section 7.

2. PHASE-TYPE DISTRIBUTIONS
In this section, we review the definition and some proper-

ties of PH distributions. We follow the treatment presented
in [21] and [17], and therefore, the proofs in this section are
not included since the interested reader can find them in
those books.

A continuous PH distribution is defined as the time until
absorption in a CTMC, with one absorbing state and all
others transient. The generator matrix of such process with
m + 1 states can be written as

Q =
0 0

a A
,

where A is a square matrix of size m, a is a column vector
of size m and 0 is a row vector of zeros. Here, the the first
entry in the state space represents the absorbing state. As
the sum of the elements on each row must be equal to zero,
a is determined by

a = −A1,

where 1 is a column vector of ones. In order to completely
determine the process, the initial probability distribution is
defined, and can be partitioned, in an similar way to the
generator matrix, as

α0 α ,

where α0 is the probability that the process starts in the
absorbing state 0. Since the sum of all the components
in the initials conditions vector must be equal to 1, α0 is
determined by

α0 = 1 − α1.

The distribution of a continuous PH variable X is, therefore,
completely determined by the parameters α and A given
above, and we say that X has a representation (α, A). The
cumulative distribution function (CDF) of X can be shown
to be

F (t) = 1 − αeAt
1, t ≥ 0.

Notice that this has a clear similarity to the well-known ex-
ponential distribution. In fact, if there is just one transient
phase with associated rate λ and it is selected at time 0
with probability one, then the distribution is the exponen-
tial. From the previous expression, the probability density
function (PDF) of the continuous part can be computed as

f(t) = αeAt
a, t > 0.

The Laplace-Stieltjes transform of F (·) is given by

E[e−sX ] = α0 + α(sI − A)−1
a, Re(s) ≥ 0,

from which, the non-centered moments can be calculated as

E[Xk] = k!α(−A
−1)k

1, k ≥ 1.

A Discrete PH distribution can be seen as a discrete anal-
ogous case to the continuous PH distribution. In this case,
the distribution is defined as the number of steps until ab-
sorption in a Discrete Time Markov Chain (DTMC), with
one absorbing state and all others transient. The properties
for this case can be found in [17].

As stated above, a relevant property of PH distributions
is that they are closed under various operations, such as
convolution, order statistics, convex mixtures, among other.
For example, the mixture of two independent PH variables
with representations (α, A) and (β, B) which are chosen
with probabilities p and (1− p), respectively, has a PH rep-
resentation (γ, C), where

γ = [pα, (1 − p)β] and C =
A 0

0 B

Note that this is analogous to the construction of a hyper-
exponential distribution.

These closure properties can be exploited in modeling
some systems, as done, for example, in [26]. Continuous
PH distributions have some extra closure properties: the
distribution of the waiting time in a M/PH/1 queue, the
residual time, the equilibrium residual time, and the termi-
nation time of a PH process with PH failures [22].

3. OBJECT-ORIENTED FRAMEWORK
We will now describe the components of the jPhase mod-

eling framework. To the extent of our knowledge, there is no



academic or commercial software that can offer the capabil-
ities of representation nor manipulation of PH distribution
in a unified fashion. With our tool, it is possible to cre-
ate an object that represents a continuous PH distribution,
calculate the value of its PDF or its CDF, as well as any
power moment. It is also possible to compute the minimum
or the maximum between two distributions, as well as other
closure properties, like the distribution of the waiting time
in a M/PH/1 queue.

We will now discuss some of the most important issues
about the computational structure in order to give a good
understanding of the framework.

The computational architecture is divided in three differ-
ent packages: jPhase,jPhaseFit and jPhaseGenerator. The
first implements the computational representation of PH dis-
tributions and its closure properties, and will be explained
in this Section. The second offers an implementation of var-
ious PH fitting algorithms and will be explained in detail
in Section 4. The last one implements PH random vari-
ates generators and will be discussed in Section 5. The first
package can be seen as the core of the framework and the
others are supported on it. Before proceeding, we will give
a brief explanation of Java language, and object-oriented
programming.

3.1 Java and Object-Oriented Programming
Java is a programming language by Sun Microsystems

[33]. The main characteristics that Sun intended to have in
Java are: object-oriented, robust, secure, architecture neu-
tral, portable, high performance, interpreted, threaded and
dynamic.

Object-Oriented Programming (OOP) is not a new idea.
However, it did not have an increased development until
recently. OOP is based on four key principles: abstraction,
encapsulation, inheritance, and polymorphism. An excellent
explanation of OOP and the Java programming language
can be found in [33].

The abstraction capability is the one that interests us
most. Java allows us to define abstract types like PhaseVar,
and program some of its basic operations in a way that is
completely independent of the internal representation used
to store the matrices. We also define abstract functions like
min and max that implement the respective closure proper-
ties for PH random variables.

Each object in Java belongs to a particular class that de-
scribes its different components (called fields in Java) and
the functions and procedures (called methods in Java) that
operate on them. A class can extend another class, and thus
inherits fields and methods from the parent class. A class
can also implement an interface. The interfaces determine
the characteristics that a class should have, but have no
implementation of any method.

3.2 General Structure
The jPhase package is supported on a set of interfaces,

abstract classes, and implementing classes. As can be seen
in the simple Class Diagram of Figure 2, there are three
interfaces in the jPhase package: PhaseVar, ContPhaseVar,
and DiscPhaseVar. These interfaces determine the behavior
of PH distributions for both, the continuous and the discrete
cases.

In the next level, the abstract classes AbstractContPha-

seVar and AbstractDiscPhaseVar implement the correspond-

ing interface (discrete or continuous), which develop some of
the methods prescribed by the interfaces. Finally, the im-
plementing classes extend the corresponding abstract class,
and thus they make use of the already implemented meth-
ods. These methods are useful if the advanced user wants to
develop her own implementing class, because she does not
need to worry about the whole set of distribution properties,
but only needs to implement a smaller set of methods. In
the next sections, the properties of these interfaces, abstract
and implementing classes will be explained.

3.3 Interfaces
As it was said above, the jPhase package consists of three

interfaces, that determine the behavior of any PH distribu-
tion as shown next.

• PhaseVar: This interface defines the set of properties
that are common to both discrete and continuous PH
distributions. Since this is the core interface in the
framework, it has the major quantity of methods. The
methods that the interface forces to implement for any
distribution can be divided in three groups: access,
moment,s and distribution methods.

• DiscPhaseVar and ContPhaseVar: These interfaces de-
fine some of the methods that correspond to the closure
properties valid for discrete and continuous PH vari-
ables, as those discussed in section 2. The methods de-
fined by each of these interfaces can be partitioned in
two groups: distribution and closure methods. Some
of the methods defined by these interfaces are shown
in Table 2. Finally, Table 3 shows some methods that
apply only for continuous PH distributions.

3.4 Abstract Classes
As shown in Figure 2, the ContPhaseVar interface is imple-

mented by the abstract class AbstractContPhaseVar, which
implements almost all the methods defined by PhaseVar

and ContPhaseVar. In particular, none of the methods im-
plemented by this class depends on the representation of
the matrices and vectors involved. This means that new
classes can be built on particular sparse matrix representa-
tions without losing the inherited methods from the abstract
classes. This class computes the probability density func-
tion, using the uniformization method for computing the ex-
ponential matrix eAt (see, e.g., [17]). In an analogous way,
the abstract class AbstractDiscPhaseVar implements the
interface DiscPhaseVar. Thus, it already has implemented
the main methods imposed by the interface, including dis-
tribution related, moments, and some access methods.

Some methods depend on the particular representation
given to the matrices. Our framework relies on the capa-
bilities of the Matrix Toolkit for Java (MTJ) library [12]
to represent dense and disperse matrices, and depending on
this internal representation there are different classes as ex-
plained in the next subsection.

3.5 Implementing Classes
The developed implementing classes are those that a fi-

nal user will usually manipulate. They have been designed
as general PH representations for the continuous and dis-
crete cases, and with dense and sparse storage. The Dense-

ContPhaseVar and DenseDiscPhaseVar are classes that rep-
resent continuous and discrete PH distributions, using the



Figure 2: Class Diagram for jPhase Package

Table 1: Some methods for the PhaseVar interface
Type Method Result

getMatrix() Generator matrix A

setMatrix(A) Set the value of the transition matrix equal to the parameter

getVector() Returns the initial probability distribution vector α

Access setVector(α) Set α as the initial probability distribution

getNumPhases() Number of transient phases in the distribution

getVec0() Value of α0

getMat0() Absorption rate vector a = −A1

copy() Deep copy of the distribution

expectedValue() Expected value of the distribution

Moments variance() Variance of the distribution

stdDeviation() Returns the standard deviation.

CV() The Squared coefficient of Variance.

moment(k) k-th non-central moment of the distribution.

cdf(x) CDF at x

prob(a, b) Probability that the variable takes a value between a and b

Distribution survival(x) Survival function at x

lossFunction1(x) Value of the order-one loss function evaluated at x

lossFunction2(x) Value of the order-two loss function evaluated at x

quantile(x) Quantile x of the distribution

median() Median of the distribution

DenseMatrix and DenseVector classes defined by the Ma-
trix Toolkit for Java (MTJ) library [12]. These classes are
useful for many applications, where the number of phases
is not large and the memory is not a problem. They also
have constructors for many simple distributions such as ex-
ponential or Erlang in the continuous case, and geometric
or negative binomial in the discrete case.

Nevertheless, the use of matrices with dense representa-
tion can be a problem because of the large number of phases.
The SparseContPhaseVar and SparseDiscPhaseVar classes
are built over the classes available in the MTJ package to
represent sparse matrices and vectors.

4. FITTING MODULE
In the last twenty years, the problem of fitting the pa-

rameters of a PH distribution has received great attention
from the applied probability community. There are differ-
ent approaches that, as noted in [18], can be classified in
two major groups: maximum likelihood methods and mo-

ment matching techniques. Nevertheless, almost all the al-
gorithms designed for this task have an important charac-
teristic in common: they reduce the set of distributions to
be fitted from the whole PH set to a special subset.

We implemented the maximum likelihood algorithms by
Asmussen et. al. [2], Khayari et. al. [16], and Thümmler
et. al. [32], as well as the moment matching algorithms
by Telek and Heindl [31], Osogami and Harchol [25], and
Bobbio et. al. [5]. They were selected because they seem
to be representative of the efforts done in both directions
(maximum likelihood and moment matching) in the last ten
years. Other algorithms can be found in references [3,4,13–
15,29,30].

The jPhaseFit package defines the behavior of the classes
that implement algorithms to fit the parameters of a PH dis-
tribution. As shown in Figure 3, the interface PhaseFitter

is in the top of the package and defines the basic method
that any PhaseFitter should have: fit(). This method has
no parameters and must return a PH variable as the result of



Table 2: Methods for DiscPhaseVar and ContPhaseVar
Type Method Result

Distribution pmf(x) or pdf(x) Value of the probability
mass function at x (dis-
crete case) or the prob-
ability density function
(continuous case)

sum(Y ) Convolution between the
original distribution and
Y

sumGeom(p) Computes the convolu-
tion of a geometric num-
ber (with parameter p)
of i.i.d. PH distributions
as the original one

Closure sumPH(N) Convolution of a discrete
PH (N) number of i.i.d.
PH distributions

mix(p, Y ) Convex mixture between
the original distribution
(weight p) and Y

min(Y ) Minimum between the
original variable and Y

max(Y ) Maximum between the
original variable and Y

Other newVar(n) New n phase variable
with the same represen-
tation as the original

toString() Returns a string repre-
sentation of the PH dis-
tribution (including its
associated vector and the
matrix)

Table 3: Closure methods for ContPhaseVar
Method Result

times(k) Distribution of the variable scaled
by k

residualTime(x) Distribution of the residual time at
x

eqResidualTime() Distribution of the equilibrium
residual time

waitingQ(ρ) Waiting time distribution in a
M/PH/1 queue with traffic coeffi-
cient equal to ρ

the fitting process. Note that each of the fitting algorithms
receives different types of parameters. Therefore, when the
user invokes fit(), those parameters should be specified at
the constructor method of each implementing class .

4.1 Abstract Classes
In the next level, there are two abstract classes that im-

plement the PhaseFitter interface: ContPhaseFitter and
DiscPhaseFitter, for the continuous and discrete case, re-
spectively. These classes specify the continuous or discrete
nature of the variable to be fitted, as well as the procedures
to compute the log-likelihood of the fitted distribution in
relation to the data set.

In the next level of abstract classes, a further division is
done between classes that implement Maximum Likelihood
(ML) algorithms and those related to moment-matching tech-
niques. This separation is done for both the continuous and
discrete cases. For the ML classes (MLContPhaseFitter and
MLDiscPhaseFitter), there is an attribute called logLH that
stores the log-likelihood value in order to make use of the
usual computation of the log-likelihood in the fitting process.
For the Moment-Matching related classes (MomentsCont-
PhaseFitter and MomentsDiscPhaseFitter), the attributes
m1, m2, and m3 are defined, which correspond to the moments
to be matched.

4.2 Maximum Likelihood Algorithms
The set of classes that implement maximum likelihood

algorithms are almost all for continuous PH distributions,
because most of the efforts have been done for these type
of distributions. For each one of the following algorithms,
there is an associated class that executes the procedures to
fit the parameters of a PH distribution.

4.2.1 General PH Distribution EM Algorithm
In 1996 Asmussen, Nerman, and Olsson [2] presented a

specialized version of the EM algorithm in order to fit the
parameters of the whole set of continuous PH distributions,
without reducing the target distribution to a restricted sub-
set. The EM algorithm is a general statistical technique that
was first introduced by Dempster et. al. [9] to deal with the
problem of incomplete data (for a review, see [11]). The
idea behind this algorithm is that a complete sample from
PH realizations should include the selected initial state, the
whole path of states followed until absorption, and the time
spent in each of these states. With this complete sample, it
is easy to estimate the parameters of the distribution.

Nevertheless, the sample obtained from PH realizations
is only the time that was required until absorption. In this
way, the problem can be seen as the estimation of the pa-
rameters from an incomplete sample, which makes natural
the use of the EM algorithm. The algorithm begins from
an initial guess of the vector and matrix, and the iterations
include the computation of the likelihood (E-step) and its
maximization to obtain a new set of parameters (M-step).
In the case of PH fitting, the heavy work must be done in
the E-step, where a set of n(n + 2) linear differential equa-
tions must be solved for a distribution of n phases. This
algorithm does not compute the number of phases, and it
must be entered as an initial parameter.

In this implementation, if the number of phases is not
given, the program tries with distributions from 1 to 10
phases in order to find the one that shows the greatest log-



Figure 3: Class Diagram for jPhaseFit Package

likelihood. In every iteration, this method calls the E and
M steps. The E-step uses an order-four Runge-Kutta pro-
cedure to solve the set of differential equations.

The user could also specify three important features for
the algorithm performance: the precision for stopping the
algorithm when the parameters show little change, the max-
imum number of iterations that the algorithm can execute;
and the number of evaluation points for the Runge-Kutta
method.

4.2.2 Hyper-Exponential Distribution EM Algorithm
The hyper-exponential distribution is a very special case

of PH distributions, since the initial probability vector de-
fines the probability of choosing the exponential phase to
visit, and the generator matrix has diagonal representation
with the rates of the i-th phase in the position (i, i). Thus,
the number of parameters to fit a n-phase hyper-exponential
distribution are 2n. The algorithm proposed by Khayari et.
al. [16] is also an EM algorithm like the explained above. It
begins with an initial guess of the parameters that can be
random or related to the properties of the trace (e.g. the
expected value). The authors propose an easy way to se-
lect the initial parameters. Then, a function to evaluate the
quality of the parameters is calculated in the E-step through
the probability density function of the data trace given the
parameters. In the M-step, the new set of parameters is
computed using estimators for the rates and the probabili-
ties but not for the number of phases, which is taken as a
given parameter.

In our implementation, if the number of phases is not
given, several trials of configurations from one to ten phases
are tried, and the distribution with greatest likelihood is
selected. The user can also specify the maximum number of
iterations that the algorithm can execute and the precision
level required to determine when the change in the estimated
parameters is too little and the algorithm should stop.

4.2.3 Hyper-Erlang Distribution EM Algorithm
In 2005, Thümmler et. al. [32] presented a method that

fits the parameters of a hyper-Erlang distribution, which is
a subset of the PH distributions that is also dense in [0,∞).
In some results provided by them, the EM algorithm devel-
oped for this special class has a better behavior in terms
of likelihood than the one designed for the complete Phase
family [2]. The algorithm receives as a parameter the num-
ber of Erlang branches in the distribution as well as the total
number of exponential phases in the distribution. With this
information, the algorithm determines all the possible con-
figurations of the Erlang branches and executes a version of
the EM algorithm for each case. Finally, the configuration
with the greatest likelihood is selected as the result of the
algorithm.

As can be seen, this algorithm needs more information
than the previous ones, and so the method fit()makes a
different work than just try distributions with one to ten
phases. In the implementing class, a configuration is searched
by means of the coefficient of variation of the data trace.
When the coefficient is lower than one, then the program
does not allow more than one branch since it has been shown
that the PH variable with the least coefficient of variation
is the n-Erlang(1/n) [1]. When the coefficient of varia-
tion is greater than one, it enforces the creation of multi-
ple branches as well as phases in each of them. For this
method, the precision and number of iterations are relevant
for its performance and the user can also specify them.

4.3 Moment Matching Algorithms
The distribution moments usually play an important role

in the performance analysis of real systems [25]. This has
been an important motivation for the improvement of mo-
ment matching techniques, and the attention given by differ-
ent research communities (Operations Research, Computer
Science, and Telecommunication Networks, among others).
Some of the most recent advances have been implemented in
the jPhaseFit package, as will be explained in this section.

4.3.1 Acyclic Continuous Order-2 Distributions
In 2002, Telek and Heindl [31] proposed an algorithm to



fit the parameters of an acyclic PH distributions with two
phases. Acyclic distributions have been extensively studied
since they have some important properties, as a canonic form
developed by Cumani [8] and an upper triangular transition
or generator matrix. In that paper, they establish bounds on
the set of first three moments representable by acyclic dis-
tributions of second order, for the discrete and continuous
cases. Over the characterization of these bounds, they build
the algorithm that matches three moments with the three
parameters of this distribution: the rates of each phase and
the absorption probability after the first phase (the initial
probability is all in the first phase as in the Coxian distrib-
ution).

In the implementing class, the algorithm begins with the
computation of the bounds, in order to determine if the
moment set is representable. If not, the moments are cor-
rected to the nearest point in the representable region with
a warning message about the correction for the user. When
the moment set is representable, the parameters of the dis-
tribution are calculated according to the equations shown
by the authors. Finally, the distribution is constructed with
the parameters and returned to the user.

In the same paper, the authors present an analogous al-
gorithm for the discrete case, that works in a similar fashion
and is also included in the framework.

4.3.2 Erlang-Coxian Distributions
Osogami and Harchol in a series of papers [23–25] ex-

tended the previous method. This extension consists on
the characterization of the bounds imposed over the first
three moments representable by a PH distribution with n
phases. They also introduce Erlang-Coxian distributions,
named because they can be represented as the convolu-
tion of an Erlang and a Coxian distribution of second or-
der. They present an algorithm to fit the parameters of a
Erlang-Coxian distribution with or without mass at zero,
an important issue in constructing matrix-geometric models
from phase type distributions. An important issue is that
the algorithm itself determines the number of phases needed
to represent the set of moments, making easier the use of the
algorithm since the user does not need to try different con-
figurations. The resulting distributions are not large in the
number of phases but are not strictly minimal.

The implementation of the algorithms is done in two classes:
the first one implements the “complete solution” proposed
by the authors, where the moment set is representable by
the convolution of Erlang and Coxian distribution but the
resulting distribution can have a positive mass on zero. To
avoid this, the second class implements the “positive solu-
tion”, where all the resulting distributions have no mass at
zero, but the Erlang-Coxian distribution must be extended
through a convolution or a convex mixture with an exponen-
tial distribution in order to obtain the strictly positiveness.

4.3.3 Acyclic Continuous Distributions
One of the most recent effort done in this area was made

in 2005 by Bobbio, Horvath, and Telek [5], who presented an
algorithm to match a set of first three moments with acyclic
PH distributions (APH). They described the possible sets
that can be represented by an acyclic distribution of order
n. Then they show how to match the first three moments
in a minimal way, i.e., using the minimal number of phases
needed to do it. This is done by determining the region

representable by an APH withn phases but not with n − 1.
This region is then partitioned in five areas that represent
different distribution configurations, such as the Erlang-Exp
structure that represents and n−1 Erlang distribution with
an additional exponential phase after it.

In the implementing class, the algorithm begins with the
first three non-central moments and computes the first two
normalized moments. With this information, the required
number of phases is computed and the moment set is eval-
uated in order to find in which region it falls. When it is
determined, the parameters are fitted according to the equa-
tions presented by the authors.

5. RANDOM VARIATES MODULE
In many large applications, simulation is the appropri-

ate tool to model the system because of the complex re-
lations between different stochastic variables. Because of
this, a random number generator might be a useful tool to
model a wide range of non-deterministic systems. Neuts and
Pagano [20] developed two similar algorithms to generate
random variates from discrete and continuous PH distribu-
tions. These algorithms are supported on the alias method
(see, e.g., [19]) to generate variates from discrete distribu-
tions in order to simulate the process of selecting an initial
state and then jump to the next one according to random
vectors.

The jPhaseGenerator package was developed to define the
behavior of any PH random variates generator. This behav-
ior is specified by the abstract class PhaseGenerator, which
is the core of the package. As can be seen in Figure 4,
this abstract class is extended by the classes NeutsCont-

PHGenerator and NeutsDiscPHGenerator, that implement
the algorithms proposed by Neuts and Pagano [20].

Figure 4: Simple jPhaseGenerator Package Class

Diagram

5.1 Abstract Class
This abstract class defines the basic methods that a PH

random variate generator should have. The class includes
a PhaseVar attribute that represents the distribution from
which the random variates will be generated. This attribute
should be specified at the constructor level. This abstract
class also forces the implementing subclasses to have pro-
cedures to return independent variates from the specified
distribution.



5.2 Implementing Classes
Currently, two classes are provided with jPhase that ex-

tend the previously explained PhaseGenerator abstract class.
These are NeutsContPHGenerator and NeutsDiscPHGenerator,
which implement the method proposed by Neuts and Pagano
[20]. The first one implements the continuous case and the
second the discrete one. The continuous algorithm has a first
step, in which the continuous chain is transformed into a
discrete one, using the well-known embedded chain. There-
after, the main algorithm (for discrete distributions) can be
used for both cases.

The algorithm strategy is to simulate the DTMC or CTMC
associated with the corresponding PH distribution until ab-
sorption occurs. It first chooses an initial state from the
distribution given by the initial probability vector; then, it
selects a next state to visit using the discrete distribution
associated with the present state, given by the associated
row in the transition matrix; this process is repeated until
the chosen state is the absorbing one. In the discrete case,
the value of the random variate is the number of steps (se-
lections) made until absorption. For the continuous case,
the number of visits to each state is stored and an Erlang
variate is generated for each state with non-zero number of
visits. The parameters of the Erlang distributions are the
associated rate of the state and the number of visits carried
out. For example, if the state i was visited ni times and has
an associated rate of λi, an Erlang(ni, λi) random variate
must be generated. The sum of these variates over all the
states is the value of the PH random variate.

Two important issues of this algorithm must be empha-
sized. The first one is the several uses of discrete distribu-
tions to generate the variates, which can be done efficiently
through the alias method (see, e.g., [19]). The second issue
is that for the continuous case, in addition to the discrete
variates, only Erlang variates must be generated. In the case
of many visits to the same state, these variates can also be
efficiently generated by multiplying a gamma variate with
parameters (ni, 1) times λ−1

i
, that will be an Erlang variate

with the required parameters [20].
The package PhaseGenerator also has an implementation

of the polynomial-time algorithm proposed by Gonzalez et.
al. [10] to perform a Kolmogorov-Smirnov test, that can be
useful to test the goodness-of-fit of the generated numbers
in relation to the theoretic PH distribution.

6. EXAMPLES
In order to give a closer understanding of jPhase, some ex-

amples will be given to clarify the construction and manip-
ulation of the computational objects. The distributions can
be created from arrays of doubles, that represent the initial
probability vector and the generator matrix of the transient
states (as specified in section 2), but there are also standard
creators for distributions like exponential, Erlang, Cox, and
hyper-exponential. Once the distributions are created, they
can be manipulated through the use of closure properties.
In Figure 5, the convolution between the distributions of two
Erlangs with different parameters is calculated. Notice that
we used a dense representation for them.

The resulting variable from the previous code has the
usual representation, which includes the initial probability
vector α and the transition matrix A, as explained in sec-
tion 2. The result from the example is shown next, where the

ContPhaseVar v1 = DenseContPhaseVar . Erlang ( 0 . 8 , 3 ) ;

ContPhaseVar v2 = DenseContPhaseVar . Erlang ( 1 . 5 , 2 ) ;

ContPhaseVar v3 = v1 . sum( v2 ) ;
System . out . p r i n t l n ( ”v3 :\n”+v3 . d e s c r i p t i o n ( ) ) ;

Figure 5: jPhase: Example 1

representation of the calculated variable is printed. With a
simple command, we could have also asked for the expected
value or the variance of the obtained variable.

v3 :

Phase−Type D i s t r i bu t i on
Number o f Phases : 5
Vector :

1 .0000 0.0000 0.0000 0.0000 0.0000
Matrix :

−0.8000 0.8000 0.0000 0.0000 0.0000
0.0000 −0.8000 0.8000 0.0000 0.0000
0.0000 0.0000 −0.8000 0.8000 0.0000
0.0000 0.0000 0.0000 −1.5000 1.5000
0.0000 0.0000 0.0000 0.0000 −1.5000

Figure 6: jPhase: Result for Example 1

Since jPhase is built over MTJ [12], it is also possible to
construct PH distributions from matrices and vectors de-
fined in that library. As can be seen in the next example,
the matrix and the vector of the PH distribution are first
built as DenseMatrix and DenseVector (MTJ objects), and
then the continuous PH distribution is constructed.

DenseMatrix A = new DenseMatrix (
new double [ ] [ ] {
{−4 ,2 ,1} , {1 ,−3 ,1} ,
{2 , 1,−5} } ) ;

DenseVector alpha = new DenseVector (new double [ ]
{0 .1 , 0 . 2 , 0 . 2 } ) ;

DenseContPhaseVar v1 = new DenseContPhaseVar ( alpha , A) ;

double rho = 0 . 5 ;
PhaseVar v2 = v1 . waitingQ ( rho ) ;
System . out . p r i n t l n ( ”v2 :\n”+v2 . d e s c r i p t i o n ( ) ) ;

Figure 7: jPhase: Example 2

In the previous example, the distribution of the waiting
time in queue is computed taking the variable v1 as the
service time distribution and assuming that the traffic coef-
ficient of the M/PH/1 queue is equal to 0.5. The resulting
distribution is then printed and the output is shown next.

Another way to do the former calculations is through the
Graphic User Interface (GUI). This can be used to build
PH variables from direct input, or from a data set to fit the
parameters of the distribution. It also allows to compute clo-
sure properties and has the capabilities to show graphically
the probability density function or the cumulative proba-
bility distribution of a specified PH distribution. A sample
screen-shot of the developed GUI is shown in Figure 9.

As can be seen, the developed framework is an easy way to
deal with PH distributions and can be used as a supporting
tool in several practical researches, where the main point is
to build a probabilistic model that describes the system, and
the PH distributions are an important tool to do it. Thus,



v2 :

Phase−Type D i s t r i bu t i on
Number o f Phases : 3
Vector :

0 .1500 0.2250 0.1250
Matrix :

−3.8500 2.2250 1.1250
1.1500 −2.7750 1.1250
2.3000 1.4500 −4.7500

Figure 8: jPhase: Result for Example 2

Figure 9: jPhase: Graphic User Interface

the researcher can focus on the modeling issue based on the
computational representation developed in this work.

7. CONCLUSIONS
PH distributions have shown to be a powerful tool in com-

putational probability since they can be used as input of
Markov models, which allows the use of efficient algorithms
to compute measures of performance of real systems. In this
work a computational framework has been designed and de-
veloped in order to allow the computational representation
and manipulation of these distributions. The computational
objects allow the user to concentrate in the modeling issues
and not in the computation of distributions, moments or
closure properties. In this way, the developed tool makes
more accessible PH distribution for researches interested in
stochastic modeling and performance evaluation of real sys-
tems.

The extensibility of the framework helps the advanced
user to develop new classes that can have a different rep-
resentation (special sparse structures), but still exploiting
the implemented methods in abstract classes. Moreover,
in the development of such extended classes, the interested
user can just implement some simple methods for the spe-
cific representation, or can develop procedures for some or
all the methods related to the distribution. In this way, the
framework is not restricted to the developed methods, e.g.
the researcher could use a different solver to compute the
density function of a particular class of distributions.

The fitting package offers a set of recently developed al-
gorithms to fit the parameters of a PH distribution from a
data trace. It is possible to use general settings for the al-

gorithms, without specifying any parameter. But the user
can also determine specific characteristics, as the number of
phases in the distribution, or the precision for convergence
criterion. There is also a framework that can help to de-
sign the implementation of new algorithms, since the user
has all the distribution classes as well as other algorithms to
support her development.

Finally, the framework also includes a package for PH
variates generation, which can be used to model large sys-
tems using simulation models with PH distributions. The
tool has itself some procedures to do that, but the advanced
user could also develop a new algorithm and implement it
with the help of the utility methods and the unified frame-
work.
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